[MITgcm-support] gluemnc problems

Oliver Jahn jahn at MIT.EDU
Tue Sep 4 10:28:44 EDT 2012


Hi Andrea,

I have a python script that does what gluemnc does.  It is still in 
development, so I am sending it only to you.  Should work on any size 
files, though.  Only requirement is numpy (netcdf reader is inlined from 
scipy.io.netcdf).  Make the file executable and run

./gluemnc

for a short help message.  Usage is slightly different from the nco 
shell script: you have to give all the input files on the command line 
(or a glob pattern) and put a -o before the output file name.  Let me 
know if you have questions or find bugs!

Cheers,
Oliver


On 2012-09-04 09:37, cimatori wrote:
> Hi everybody,
> gluemnc has suddenly stopped to work, apparently after system
> administrators have updated nco tools to the (not so new, in fact)
> 4.0.8. Basically, gluemnc fails due to a "core dumped" in ncrcat, while
> processing a grid with 300x150 point. I was thinking of trying to
> manually install a more recent version of nco, but maybe you have more
> clever suggestions. I also read that a python tool equivalent to gluemnc
> may be available (where?), could that help?
> Thanks!

-- 
Oliver Jahn                                       tel:  +1 617 253 2454
Earth System Initiative and                       fax:  +1 617 253 4464
Dept. of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
77 Massachusetts Ave., Bldg. 54-1510              skype:    oliver.jahn
Cambridge, MA 02139-4307 USA                      email:   jahn at mit.edu
-------------- next part --------------
#!/usr/bin/env python
"""Usage: gluemnc [--verbose] [-v <vars>] -o <outfile> <files>

 -v <vars>  comma-separated list of variable names or glob patterns
 --verbose  report variables being read

All files must have the same variables.
Each variable (or 1 record of it) must fit in memory.

Examples:

gluemnc -o ptr.nc mnc_*/ptr_tave.*.nc
gluemnc -o BIO.nc -v 'BIO_*' mnc_*/ptr_tave.*.nc
"""

# Based on the netcdf module in scipy.io, which in turn is based on pupynere
# Modified netcdf module is included here, script follows

moduledoc = """
NetCDF reader/writer module.

This module is used to read and create NetCDF files. NetCDF files are
accessed through the `netcdf_file` object. Data written to and from NetCDF
files are contained in `netcdf_variable` objects. Attributes are given
as member variables of the `netcdf_file` and `netcdf_variable` objects.

Notes
-----
NetCDF files are a self-describing binary data format. The file contains
metadata that describes the dimensions and variables in the file. More
details about NetCDF files can be found `here
<http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html>`_. There
are three main sections to a NetCDF data structure:

1. Dimensions
2. Variables
3. Attributes

The dimensions section records the name and length of each dimension used
by the variables. The variables would then indicate which dimensions it
uses and any attributes such as data units, along with containing the data
values for the variable. It is good practice to include a
variable that is the same name as a dimension to provide the values for
that axes. Lastly, the attributes section would contain additional
information such as the name of the file creator or the instrument used to
collect the data.

When writing data to a NetCDF file, there is often the need to indicate the
'record dimension'. A record dimension is the unbounded dimension for a
variable. For example, a temperature variable may have dimensions of
latitude, longitude and time. If one wants to add more temperature data to
the NetCDF file as time progresses, then the temperature variable should
have the time dimension flagged as the record dimension.

This module implements the Scientific.IO.NetCDF API to read and create
NetCDF files. The same API is also used in the PyNIO and pynetcdf
modules, allowing these modules to be used interchangeably when working
with NetCDF files. The major advantage of this module over other
modules is that it doesn't require the code to be linked to the NetCDF
libraries.

In addition, the NetCDF file header contains the position of the data in
the file, so access can be done in an efficient manner without loading
unnecessary data into memory. It uses the ``mmap`` module to create
Numpy arrays mapped to the data on disk, for the same purpose.

Examples
--------
To create a NetCDF file:

    >>> from scipy.io import netcdf
    >>> f = netcdf.netcdf_file('simple.nc', 'w')
    >>> f.history = 'Created for a test'
    >>> f.createDimension('time', 10)
    >>> time = f.createVariable('time', 'i', ('time',))
    >>> time[:] = range(10)
    >>> time.units = 'days since 2008-01-01'
    >>> f.close()

Note the assignment of ``range(10)`` to ``time[:]``.  Exposing the slice
of the time variable allows for the data to be set in the object, rather
than letting ``range(10)`` overwrite the ``time`` variable.

To read the NetCDF file we just created:

    >>> from scipy.io import netcdf
    >>> f = netcdf.netcdf_file('simple.nc', 'r')
    >>> print f.history
    Created for a test
    >>> time = f.variables['time']
    >>> print time.units
    days since 2008-01-01
    >>> print time.shape
    (10,)
    >>> print time[-1]
    9
    >>> f.close()

"""

#TODO:
# * properly implement ``_FillValue``.
# * implement Jeff Whitaker's patch for masked variables.
# * fix character variables.
# * implement PAGESIZE for Python 2.6?

#The Scientific.IO.NetCDF API allows attributes to be added directly to
#instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
#between user-set attributes and instance attributes, user-set attributes
#are automatically stored in the ``_attributes`` attribute by overloading
#``__setattr__``. This is the reason why the code sometimes uses
#``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
#otherwise the key would be inserted into userspace attributes.


__all__ = ['netcdf_file', 'netcdf_variable']


from operator import mul
from collections import OrderedDict
from mmap import mmap, ACCESS_READ

import numpy as np
from numpy.compat import asbytes, asstr
from numpy import fromstring, ndarray, dtype, empty, array, asarray
from numpy import little_endian as LITTLE_ENDIAN


ABSENT       = asbytes('\x00\x00\x00\x00\x00\x00\x00\x00')
ZERO         = asbytes('\x00\x00\x00\x00')
NC_BYTE      = asbytes('\x00\x00\x00\x01')
NC_CHAR      = asbytes('\x00\x00\x00\x02')
NC_SHORT     = asbytes('\x00\x00\x00\x03')
NC_INT       = asbytes('\x00\x00\x00\x04')
NC_FLOAT     = asbytes('\x00\x00\x00\x05')
NC_DOUBLE    = asbytes('\x00\x00\x00\x06')
NC_DIMENSION = asbytes('\x00\x00\x00\n')
NC_VARIABLE  = asbytes('\x00\x00\x00\x0b')
NC_ATTRIBUTE = asbytes('\x00\x00\x00\x0c')


TYPEMAP = { NC_BYTE:   ('b', 1),
            NC_CHAR:   ('c', 1),
            NC_SHORT:  ('h', 2),
            NC_INT:    ('i', 4),
            NC_FLOAT:  ('f', 4),
            NC_DOUBLE: ('d', 8) }

REVERSE = { 'b': NC_BYTE,
            'c': NC_CHAR,
            'h': NC_SHORT,
            'i': NC_INT,
            'f': NC_FLOAT,
            'd': NC_DOUBLE,

            # these come from asarray(1).dtype.char and asarray('foo').dtype.char,
            # used when getting the types from generic attributes.
            'l': NC_INT,
            'S': NC_CHAR }


class unmapped_array(object):
    def __init__(self, shape, dtype_):
        self.shape = shape
        self.dtype = np.dtype(dtype_)

    @property
    def itemsize(self):
        return self.dtype.itemsize

    @property
    def size(self):
        return reduce(mul, self.shape, 1)

    @property
    def nbytes(self):
        return self.size * self.itemsize

    def __len__(self):
        return self.shape[0]


class netcdf_file(object):
    """
    A file object for NetCDF data.

    A `netcdf_file` object has two standard attributes: `dimensions` and
    `variables`. The values of both are dictionaries, mapping dimension
    names to their associated lengths and variable names to variables,
    respectively. Application programs should never modify these
    dictionaries.

    All other attributes correspond to global attributes defined in the
    NetCDF file. Global file attributes are created by assigning to an
    attribute of the `netcdf_file` object.

    If mode='w' and mmap=True, creates a file on disk and attaches
    mmaps to variables before assigning values.  You need to call
    write_metadata after defining all attributes, dimensions and variables,
    but before assigning any values to variables.

    Parameters
    self.delay = delay
    ----------
    filename : string or file-like
        string -> filename
    mode : {'r', 'w'}, optional
        read-write mode, default is 'r'
    mmap : None or bool, optional
        Whether to mmap `filename` when reading.  Default is True
        when `filename` is a file name, False when `filename` is a
        file-like object
    version : {1, 2}, optional
        version of netcdf to read / write, where 1 means *Classic
        format* and 2 means *64-bit offset format*.  Default is 1.  See
        `here <http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Which-Format.html>`_
        for more info.

    """
    def __init__(self, filename, mode='r', mmap=None, version=1, delay=False):
        """Initialize netcdf_file from fileobj (str or file-like)."""
        if delay:
            if mmap is None:
                mmap = False
            else:
                raise ValueError('Cannot delay variables for mmap')
        if hasattr(filename, 'seek'): # file-like
            self.fp = filename
            self.filename = 'None'
            if mmap is None:
                mmap = False
            elif mmap and not hasattr(filename, 'fileno'):
                raise ValueError('Cannot use file object for mmap')
        else: # maybe it's a string
            self.filename = filename
            if mmap and mode == 'w':
                fmode = 'wb+'
            else:
                fmode = '%sb' % mode
            self.fp = open(self.filename, fmode)
            if mmap is None:
                mmap  = True
        self.use_mmap = mmap
        self.version_byte = version
        self.delay = delay

        if not mode in 'rw':
            raise ValueError("Mode must be either 'r' or 'w'.")
        self.mode = mode

        self.dimensions = OrderedDict()
        self.variables = OrderedDict()

        self._dims = []
        self._recs = 0
        self._recsize = 0

        self._mapped = False
        self._begins = OrderedDict()

        self._attributes = OrderedDict()

        if mode == 'r':
            self._read()

    def __setattr__(self, attr, value):
        # Store user defined attributes in a separate dict,
        # so we can save them to file later.
        try:
            self._attributes[attr] = value
        except AttributeError:
            pass
        self.__dict__[attr] = value

    def close(self):
        """Closes the NetCDF file."""
        if not self.fp.closed:
            try:
               self.flush()
            finally:
                self.fp.close()
    __del__ = close

    def createDimension(self, name, length):
        """
        Adds a dimension to the Dimension section of the NetCDF data structure.

        Note that this function merely adds a new dimension that the variables can
        reference.  The values for the dimension, if desired, should be added as
        a variable using `createVariable`, referring to this dimension.

        Parameters
        ----------
        name : str
            Name of the dimension (Eg, 'lat' or 'time').
        length : int
            Length of the dimension.

        See Also
        --------
        createVariable

        """
        self.dimensions[name] = length
        self._dims.append(name)

    def createVariable(self, name, type, dimensions):
        """
        Create an empty variable for the `netcdf_file` object, specifying its data
        type and the dimensions it uses.

        Parameters
        ----------
        name : str
            Name of the new variable.
        type : dtype or str
            Data type of the variable.
        dimensions : sequence of str
            List of the dimension names used by the variable, in the desired order.

        Returns
        -------
        variable : netcdf_variable
            The newly created ``netcdf_variable`` object.
            This object has also been added to the `netcdf_file` object as well.

        See Also
        --------
        createDimension

        Notes
        -----
        Any dimensions to be used by the variable should already exist in the
        NetCDF data structure or should be created by `createDimension` prior to
        creating the NetCDF variable.

        """
        shape = tuple([self.dimensions[dim] for dim in dimensions])
        shape_ = tuple([dim or 0 for dim in shape])  # replace None with 0 for numpy

        if isinstance(type, basestring): type = np.dtype(type)
        typecode, size = type.char, type.itemsize
        dtype_ = '>%s' % typecode
        if size > 1: dtype_ += str(size)

        data = unmapped_array(shape_, dtype_)
        self.variables[name] = netcdf_variable(data, typecode, shape, dimensions)
        return self.variables[name]

    def flush(self):
        """
        Perform a sync-to-disk flush if the `netcdf_file` object is in write mode.
        Close mmaps if used.

        See Also
        --------
        sync : Identical function

        """
        if getattr(self, 'mode', None) is 'w':
            if self.use_mmap:
                if not self._mapped:
                    self._map()
                self.update_numrecs(self._recs)
            else:
                self._write()
    sync = flush

    def write_metadata(self):
        '''This needs to be called before assigning any data to variables!'''
        self._map()

    def _map(self):
        self.fp.seek(0)
        self.fp.write(asbytes('CDF'))
        self.fp.write(array(self.version_byte, '>b').tostring())

        # Write headers
        self._write_numrecs()
        self._write_dim_array()
        self._write_gatt_array()
        self._map_var_array()
        self._mapped = True

    def _map_var_array(self):
        if self.variables:
            self.fp.write(NC_VARIABLE)
            self._pack_int(len(self.variables))

            # Sort variables non-recs first, then recs.
            # keep order from variable creation otherwise
            nonrec_vars = [ k for k,v in self.variables.items() if not v.isrec ]
            rec_vars = [ k for k,v in self.variables.items() if v.isrec ]

            # Set the metadata for all variables.
            for name in nonrec_vars + rec_vars:
                self._map_var_metadata(name)
            # Now that we have the metadata, we know the vsize of
            # each record variable, so we can calculate recsize.
            nonrecsize = sum([
                    var._vsize for var in self.variables.values()
                    if not var.isrec])
            self.__dict__['_recsize'] = sum([
                    var._vsize for var in self.variables.values()
                    if var.isrec])

            # fill file
            pos0 = pos = self.fp.tell()
#            end = pos0 + nonrecsize + self._recs*self._recsize
#            self.fp.seek(end-1)
#            self.fp.write('\x00')
#            self.fp.flush()
#            self.fp.seek(pos0)

            # set file pointers for all variables.
            for name in nonrec_vars:
                var = self.variables[name]
                # Set begin in file header.
                self.fp.seek(var._begin)
                self._pack_begin(pos)
                self._begins[name] = pos
                pos += var._vsize

            for name in rec_vars:
                var = self.variables[name]
                # Set begin in file header.
                self.fp.seek(var._begin)
                self._pack_begin(pos)
                self._begins[name] = pos
                pos += var._vsize

            # first var
            self.fp.seek(pos0)
        else:
            self.fp.write(ABSENT)

    def _map_var_metadata(self, name):
        var = self.variables[name]

        self._pack_string(name)
        self._pack_int(len(var.dimensions))
        for dimname in var.dimensions:
            dimid = self._dims.index(dimname)
            self._pack_int(dimid)

        self._write_att_array(var._attributes)

        nc_type = REVERSE[var.typecode()]
        self.fp.write(asbytes(nc_type))

        if not var.isrec:
            vsize = var.data.size * var.data.itemsize
            vsize += -vsize % 4
        else:  # record variable
            if 1:  #var.data.shape[0]:
                size = reduce(mul, var.data.shape[1:], 1)
                vsize = size * var.data.itemsize
            else:
                vsize = 0
            rec_vars = len([var for var in self.variables.values()
                    if var.isrec])
            if rec_vars > 1:
                vsize += -vsize % 4
        self.variables[name].__dict__['_vsize'] = vsize
        self._pack_int(vsize)

        # Pack a bogus begin, and set the real value later.
        self.variables[name].__dict__['_begin'] = self.fp.tell()
        self._pack_begin(0)

    @property
    def numrecs(self):
        return self._recs

    @property
    def attributes(self):
        return self._attributes

    @property
    def begins(self):
        return [(name,pos,self.variables[name].isrec) for name,pos in self._begins.items()]

    def write_var(self, name, val):
        var = self.variables[name]
        pos = self._begins[name]
        self.fp.seek(pos)
        np.asanyarray(val, var.data.dtype).tofile(self.fp)
        # pad
        count = var.data.size * var.data.itemsize
        self.fp.write(asbytes('0') * (var._vsize - count))

    def write_recvar(self, name, rec, val):
        var = self.variables[name]
        pos = self._begins[name] + rec*self._recsize
        self.fp.seek(pos)
        np.asanyarray(val, var.data.dtype).tofile(self.fp)
        # pad
        count = var.data.size * var.data.itemsize
        self.fp.write(asbytes('0') * (var._vsize - count))
        if rec >= self._recs:
            self.__dict__['_recs'] = rec + 1

    def _write(self):
        self.fp.write(asbytes('CDF'))
        self.fp.write(array(self.version_byte, '>b').tostring())

        # Write headers and data.
        self._write_numrecs()
        self._write_dim_array()
        self._write_gatt_array()
        self._write_var_array()

    def _write_numrecs(self):
        # Get highest record count from all record variables.
        for var in self.variables.values():
            if var.isrec and len(var.data) > self._recs:
                self.__dict__['_recs'] = len(var.data)
        self.__dict__['_numrecs_begin'] = self.fp.tell()
        self._pack_int(self._recs)

    def update_numrecs(self, numrecs):
        self.__dict__['_recs'] = numrecs
        self.fp.seek(self._numrecs_begin)
        self._pack_int(numrecs)

    def _write_dim_array(self):
        if self.dimensions:
            self.fp.write(NC_DIMENSION)
            self._pack_int(len(self.dimensions))
            for name in self._dims:
                self._pack_string(name)
                length = self.dimensions[name]
                self._pack_int(length or 0)  # replace None with 0 for record dimension
        else:
            self.fp.write(ABSENT)

    def _write_gatt_array(self):
        self._write_att_array(self._attributes)

    def _write_att_array(self, attributes):
        if attributes:
            self.fp.write(NC_ATTRIBUTE)
            self._pack_int(len(attributes))
            for name, values in attributes.items():
                self._pack_string(name)
                self._write_values(values)
        else:
            self.fp.write(ABSENT)

    def _write_var_array(self):
        if self.variables:
            self.fp.write(NC_VARIABLE)
            self._pack_int(len(self.variables))

            # Sort variables non-recs first, then recs. We use a DSU
            # since some people use pupynere with Python 2.3.x.
            deco = [ (v._shape and not v.isrec, k) for (k, v) in self.variables.items() ]
            deco.sort()
            variables = [ k for (unused, k) in deco ][::-1]

            # Set the metadata for all variables.
            for name in variables:
                self._write_var_metadata(name)
            # Now that we have the metadata, we know the vsize of
            # each record variable, so we can calculate recsize.
            self.__dict__['_recsize'] = sum([
                    var._vsize for var in self.variables.values()
                    if var.isrec])
            # Set the data for all variables.
            for name in variables:
                self._write_var_data(name)
        else:
            self.fp.write(ABSENT)

    def _write_var_metadata(self, name):
        var = self.variables[name]

        self._pack_string(name)
        self._pack_int(len(var.dimensions))
        for dimname in var.dimensions:
            dimid = self._dims.index(dimname)
            self._pack_int(dimid)

        self._write_att_array(var._attributes)

        nc_type = REVERSE[var.typecode()]
        self.fp.write(asbytes(nc_type))

        if not var.isrec:
            vsize = var.data.size * var.data.itemsize
            vsize += -vsize % 4
        else:  # record variable
            try:
                vsize = var.data[0].size * var.data.itemsize
            except IndexError:
                vsize = 0
            rec_vars = len([var for var in self.variables.values()
                    if var.isrec])
            if rec_vars > 1:
                vsize += -vsize % 4
        self.variables[name].__dict__['_vsize'] = vsize
        self._pack_int(vsize)

        # Pack a bogus begin, and set the real value later.
        self.variables[name].__dict__['_begin'] = self.fp.tell()
        self._pack_begin(0)

    def _write_var_data(self, name):
        var = self.variables[name]

        # Set begin in file header.
        the_beguine = self.fp.tell()
        self.fp.seek(var._begin)
        self._pack_begin(the_beguine)
        self.fp.seek(the_beguine)

        # Write data.
        if not var.isrec:
            self.fp.write(var.data.tostring())
            count = var.data.size * var.data.itemsize
            self.fp.write(asbytes('0') * (var._vsize - count))
        else:  # record variable
            # Handle rec vars with shape[0] < nrecs.
            if self._recs > len(var.data):
                shape = (self._recs,) + var.data.shape[1:]
                var.data.resize(shape)

            pos0 = pos = self.fp.tell()
            for rec in var.data:
                # Apparently scalars cannot be converted to big endian. If we
                # try to convert a ``=i4`` scalar to, say, '>i4' the dtype
                # will remain as ``=i4``.
                if not rec.shape and (rec.dtype.byteorder == '<' or
                        (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)):
                    rec = rec.byteswap()
                self.fp.write(rec.tostring())
                # Padding
                count = rec.size * rec.itemsize
                self.fp.write(asbytes('0') * (var._vsize - count))
                pos += self._recsize
                self.fp.seek(pos)
            self.fp.seek(pos0 + var._vsize)

    def _write_values(self, values):
        if hasattr(values, 'dtype'):
            nc_type = REVERSE[values.dtype.char]
        else:
            types = [
                    (int, NC_INT),
                    (long, NC_INT),
                    (float, NC_FLOAT),
                    (basestring, NC_CHAR),
                    ]
            try:
                sample = values[0]
            except (TypeError, IndexError):
                sample = values
            for class_, nc_type in types:
                if isinstance(sample, class_): break

        typecode, size = TYPEMAP[nc_type]
        if typecode is 'c':
            dtype_ = '>c'
        else:
            dtype_ = '>%s' % typecode
            if size > 1: dtype_ += str(size)

        values = asarray(values, dtype=dtype_)

        self.fp.write(asbytes(nc_type))

        if values.dtype.char == 'S':
            nelems = values.itemsize
        else:
            nelems = values.size
        self._pack_int(nelems)

        if not values.shape and (values.dtype.byteorder == '<' or
                (values.dtype.byteorder == '=' and LITTLE_ENDIAN)):
            values = values.byteswap()
        self.fp.write(values.tostring())
        count = values.size * values.itemsize
        self.fp.write(asbytes('0') * (-count % 4))  # pad

    def _read(self):
        # Check magic bytes and version
        magic = self.fp.read(3)
        if not magic == asbytes('CDF'):
            raise TypeError("Error: %s is not a valid NetCDF 3 file" %
                            self.filename)
        self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0]

        # Read file headers and set data.
        self._read_numrecs()
        self._read_dim_array()
        self._read_gatt_array()
        self._read_var_array()

    def _read_numrecs(self):
        self.__dict__['_recs'] = self._unpack_int()

    def _read_dim_array(self):
        header = self.fp.read(4)
        assert header in [ZERO, NC_DIMENSION]
        count = self._unpack_int()

        for dim in range(count):
            name = asstr(self._unpack_string())
            length = self._unpack_int() or None  # None for record dimension
            self.dimensions[name] = length
            self._dims.append(name)  # preserve order

    def _read_gatt_array(self):
        for k, v in self._read_att_array().items():
            self.__setattr__(k, v)

    def _read_att_array(self):
        header = self.fp.read(4)
        assert header in [ZERO, NC_ATTRIBUTE]
        count = self._unpack_int()

        attributes = OrderedDict()
        for attr in range(count):
            name = asstr(self._unpack_string())
            attributes[name] = self._read_values()
        return attributes

    def _read_var_array(self):
        header = self.fp.read(4)
        assert header in [ZERO, NC_VARIABLE]

        begin = 0
        dtypes = {'names': [], 'formats': []}
        rec_vars = []
        count = self._unpack_int()
        for var in range(count):
            (name, dimensions, shape, attributes,
             typecode, size, dtype_, begin_, vsize) = self._read_var()
            # http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html
            # Note that vsize is the product of the dimension lengths
            # (omitting the record dimension) and the number of bytes
            # per value (determined from the type), increased to the
            # next multiple of 4, for each variable. If a record
            # variable, this is the amount of space per record. The
            # netCDF "record size" is calculated as the sum of the
            # vsize's of all the record variables.
            #
            # The vsize field is actually redundant, because its value
            # may be computed from other information in the header. The
            # 32-bit vsize field is not large enough to contain the size
            # of variables that require more than 2^32 - 4 bytes, so
            # 2^32 - 1 is used in the vsize field for such variables.
            if shape and shape[0] is None: # record variable
                rec_vars.append(name)
                # The netCDF "record size" is calculated as the sum of
                # the vsize's of all the record variables.
                self.__dict__['_recsize'] += vsize
                if begin == 0: begin = begin_
                dtypes['names'].append(name)
                dtypes['formats'].append(str(shape[1:]) + dtype_)

                # Handle padding with a virtual variable.
                if typecode in 'bch':
                    actual_size = reduce(mul, (1,) + shape[1:]) * size
                    padding = -actual_size % 4
                    if padding:
                        dtypes['names'].append('_padding_%d' % var)
                        dtypes['formats'].append('(%d,)>b' % padding)

                # Data will be set later.
                if self.delay:
                    self._begins[name] = begin_
                    data = unmapped_array((self._recs,)+shape[1:], dtype_)
                else:
                    data = None
            else: # not a record variable
                # Calculate size to avoid problems with vsize (above)
                a_size = reduce(mul, shape, 1) * size
                if self.use_mmap:
                    mm = mmap(self.fp.fileno(), begin_+a_size, access=ACCESS_READ)
                    data = ndarray.__new__(ndarray, shape, dtype=dtype_,
                            buffer=mm, offset=begin_, order=0)
                elif self.delay:
                    self._begins[name] = begin_
                    data = unmapped_array(shape, dtype_)
                else:
                    pos = self.fp.tell()
                    self.fp.seek(begin_)
                    data = fromstring(self.fp.read(a_size), dtype=dtype_)
                    data.shape = shape
                    self.fp.seek(pos)

            # Add variable.
            self.variables[name] = netcdf_variable(
                    data, typecode, shape, dimensions, attributes)

        if rec_vars and not self.delay:
            # Remove padding when only one record variable.
            if len(rec_vars) == 1:
                dtypes['names'] = dtypes['names'][:1]
                dtypes['formats'] = dtypes['formats'][:1]

            # Build rec array.
            if self.use_mmap:
                mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, access=ACCESS_READ)
                rec_array = ndarray.__new__(ndarray, (self._recs,), dtype=dtypes,
                        buffer=mm, offset=begin, order=0)
            else:
                pos = self.fp.tell()
                self.fp.seek(begin)
                rec_array = fromstring(self.fp.read(self._recs*self._recsize), dtype=dtypes)
                rec_array.shape = (self._recs,)
                self.fp.seek(pos)

            for var in rec_vars:
                self.variables[var].__dict__['data'] = rec_array[var]

    def read_var(self, name):
        var = self.variables[name]
        pos = self._begins[name]
        self.fp.seek(pos)
        data = fromstring(self.fp.read(var.data.nbytes), dtype=var.data.dtype)
        data.shape = var.data.shape
        return data

    def read_recvar(self, name, rec):
        var = self.variables[name]
        pos = self._begins[name] + rec*self._recsize
        self.fp.seek(pos)
        count = reduce(mul, var.data.shape[1:], 1) * var.data.itemsize
        data = fromstring(self.fp.read(count), dtype=var.data.dtype)
        data.shape = var.data.shape[1:]
        return data

    def _read_var(self):
        name = asstr(self._unpack_string())
        dimensions = []
        shape = []
        dims = self._unpack_int()

        for i in range(dims):
            dimid = self._unpack_int()
            dimname = self._dims[dimid]
            dimensions.append(dimname)
            dim = self.dimensions[dimname]
            shape.append(dim)
        dimensions = tuple(dimensions)
        shape = tuple(shape)

        attributes = self._read_att_array()
        nc_type = self.fp.read(4)
        vsize = self._unpack_int()
        begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()

        typecode, size = TYPEMAP[nc_type]
        if typecode is 'c':
            dtype_ = '>c'
        else:
            dtype_ = '>%s' % typecode
            if size > 1: dtype_ += str(size)

        return name, dimensions, shape, attributes, typecode, size, dtype_, begin, vsize

    def _read_values(self):
        nc_type = self.fp.read(4)
        n = self._unpack_int()

        typecode, size = TYPEMAP[nc_type]

        count = n*size
        values = self.fp.read(int(count))
        self.fp.read(-count % 4)  # read padding

        if typecode is not 'c':
            values = fromstring(values, dtype='>%s%d' % (typecode, size))
            if values.shape == (1,): values = values[0]
        else:
            values = values.rstrip(asbytes('\x00'))
        return values

    def _pack_begin(self, begin):
        if self.version_byte == 1:
            self._pack_int(begin)
        elif self.version_byte == 2:
            self._pack_int64(begin)

    def _pack_int(self, value):
        self.fp.write(array(value, '>i').tostring())
    _pack_int32 = _pack_int

    def _unpack_int(self):
        return int(fromstring(self.fp.read(4), '>i')[0])
    _unpack_int32 = _unpack_int

    def _pack_int64(self, value):
        self.fp.write(array(value, '>q').tostring())

    def _unpack_int64(self):
        return fromstring(self.fp.read(8), '>q')[0]

    def _pack_string(self, s):
        count = len(s)
        self._pack_int(count)
        self.fp.write(asbytes(s))
        self.fp.write(asbytes('0') * (-count % 4))  # pad

    def _unpack_string(self):
        count = self._unpack_int()
        s = self.fp.read(count).rstrip(asbytes('\x00'))
        self.fp.read(-count % 4)  # read padding
        return s


class netcdf_variable(object):
    """
    A data object for the `netcdf` module.

    `netcdf_variable` objects are constructed by calling the method
    `netcdf_file.createVariable` on the `netcdf_file` object. `netcdf_variable`
    objects behave much like array objects defined in numpy, except that their
    data resides in a file. Data is read by indexing and written by assigning
    to an indexed subset; the entire array can be accessed by the index ``[:]``
    or (for scalars) by using the methods `getValue` and `assignValue`.
    `netcdf_variable` objects also have attribute `shape` with the same meaning
    as for arrays, but the shape cannot be modified. There is another read-only
    attribute `dimensions`, whose value is the tuple of dimension names.

    All other attributes correspond to variable attributes defined in
    the NetCDF file. Variable attributes are created by assigning to an
    attribute of the `netcdf_variable` object.

    Parameters
    ----------
    data : array_like
        The data array that holds the values for the variable.
        Typically, this is initialized as empty, but with the proper shape.
    typecode : dtype character code
        Desired data-type for the data array.
    shape : sequence of ints
        The shape of the array.  This should match the lengths of the
        variable's dimensions.
    dimensions : sequence of strings
        The names of the dimensions used by the variable.  Must be in the
        same order of the dimension lengths given by `shape`.
    attributes : dict, optional
        Attribute values (any type) keyed by string names.  These attributes
        become attributes for the netcdf_variable object.


    Attributes
    ----------
    dimensions : list of str
        List of names of dimensions used by the variable object.
    isrec, shape
        Properties

    See also
    --------
    isrec, shape

    """
    def __init__(self, data, typecode, shape, dimensions, attributes=None):
        self.data = data
        self._typecode = typecode
        self._shape = shape
        self.dimensions = dimensions

        self._attributes = attributes or OrderedDict()
        for k, v in self._attributes.items():
            self.__dict__[k] = v

    def __setattr__(self, attr, value):
        # Store user defined attributes in a separate dict,
        # so we can save them to file later.
        try:
            self._attributes[attr] = value
        except AttributeError:
            pass
        self.__dict__[attr] = value

    @property
    def attributes(self):
        return self._attributes

    def isrec(self):
        return self.data.shape and not self._shape[0]
    isrec = property(isrec)

    def shape(self):
        return self.data.shape
    shape = property(shape)

    def getValue(self):
        """
        Retrieve a scalar value from a `netcdf_variable` of length one.

        Raises
        ------
        ValueError
            If the netcdf variable is an array of length greater than one,
            this exception will be raised.

        """
        return self.data.item()

    def assignValue(self, value):
        """
        Assign a scalar value to a `netcdf_variable` of length one.

        Parameters
        ----------
        value : scalar
            Scalar value (of compatible type) to assign to a length-one netcdf
            variable. This value will be written to file.

        Raises
        ------
        ValueError
            If the input is not a scalar, or if the destination is not a length-one
            netcdf variable.

        """
        self.data.itemset(value)

    def typecode(self):
        """
        Return the typecode of the variable.

        Returns
        -------
        typecode : char
            The character typecode of the variable (eg, 'i' for int).

        """
        return self._typecode

    def __getitem__(self, index):
        return self.data[index]

    def __setitem__(self, index, data):
        # Expand data for record vars?
        if self.isrec:
            if isinstance(index, tuple):
                rec_index = index[0]
            else:
                rec_index = index
            if isinstance(rec_index, slice):
                recs = (rec_index.start or 0) + len(data)
            else:
                recs = rec_index + 1
            if recs > len(self.data):
                shape = (recs,) + self._shape[1:]
                self.data.resize(shape)
        self.data[index] = data


NetCDFFile = netcdf_file
NetCDFVariable = netcdf_variable

######################################################################
import sys
import re
import glob
import fnmatch
from getopt import gnu_getopt as getopt
from collections import OrderedDict
import numpy as np
#from netcdf import netcdf_file

tilepatt = re.compile(r'(\.t[0-9]{3}\.nc)$')
iterpatt = re.compile(r'(\.[0-9]{10})$')

# parse command-line arguments
try:
    optlist,args = getopt(sys.argv[1:], 'o:v:', ['verbose'])
    opts = dict(optlist)
    assert '-o' in opts
    fnames = args
    assert len(fnames) > 0
except (ValueError, AssertionError):
    sys.exit(__doc__)

outname = opts.get('-o')
verbose = '--verbose' in opts
tname = 'T'

# turn into list of compiled regular expressions
varpatt = opts.get('-v', '').split(',')
varpatt = [ re.compile(fnmatch.translate(patt.strip())) for patt in varpatt ]

readopts = dict(delay=True)
writeopts = dict(mmap=True)

if len(fnames) == 1 and any(s in fnames[0] for s in '*?[]'):
    fnames = glob.glob(fnames[0])

fnames.sort()

# Get list of iterations
itfiles = {}
for fname in fnames:
    base = tilepatt.sub('', fname)
    m = iterpatt.search(base)
    if m:
        itfiles.setdefault(m.group(1), []).append((fname))

its = itfiles.keys()
its.sort()
for it in its:
    itfiles[it].sort()

filess = [ itfiles[it] for it in its ]
try:
    files0 = filess[0]
except IndexError:
    files0 = fnames

if verbose:
    print 'Files to be read:'
    for files in filess:
        print files[0], '... ({})'.format(len(files))

nc = netcdf_file(files0[0], 'r', **readopts)
gatt = OrderedDict(nc.attributes)
#gatt['tile_number'] = 1
#gatt['bi'] = 1
#gatt['bj'] = 1
del gatt['tile_number']
del gatt['bi']
del gatt['bj']
for k in gatt.keys():
    if k.startswith('exch2_'):
        del gatt[k]

sNx = gatt['sNx']
sNy = gatt['sNy']
Nx = gatt['Nx']
Ny = gatt['Ny']
ntx = gatt['nSx']*gatt['nPx']
nty = gatt['nSy']*gatt['nPy']
ntiles = ntx*nty

for it in its:
    if len(itfiles[it]) != ntiles:
        raise ValueError('Error: found {} tiles for iteration {}, need {}'.format(
                         len(itfiles[it]), it[1:], ntiles))

Xslice = []
Yslice = []
for tn in range(ntx*nty):
    bj,bi = divmod(tn, ntx)
    ie = sNx*(bi+1-ntx) or None
    je = sNy*(bj+1-nty) or None
    Xslice.append(slice(sNx*bi, ie))
    Yslice.append(slice(sNy*bj, je))

dims = OrderedDict()
for k,n in nc.dimensions.items():
    if k[0] == 'X':
        n += Nx - sNx
    elif k[0] == 'Y':
        n += Ny - sNy
    dims[k] = n

print 'Tiled dimensions:', ' '.join([k for k in nc.dimensions if k[0] in 'XY'])

havetime = tname in dims
if havetime:
    assert dims[tname] is None
    nrec = nc.numrecs
    print 'Record dimension:', tname
else:
    assert len(its) <= 1
    nrec = None

if verbose:
    print 'Variables:'

varprops = OrderedDict()
for name,var in nc.variables.items():
    if name in dims or any(patt.search(name) for patt in varpatt) or len(varpatt) == 0:
        varprops[name] = {}
        varprops[name]['dtype'] = var.data.dtype
        varprops[name]['dimensions'] = var.dimensions
        varprops[name]['ncattrs'] = OrderedDict(var.attributes)
        iX = None
        iY = None
        for i,dim in enumerate(var.dimensions):
            if dim[0] == 'X':
                iX = i
            elif dim[0] == 'Y':
                iY = i
        varprops[name]['iX'] = iX
        varprops[name]['iY'] = iY
        dimstrs = len(var.dimensions)*[':']
        if tname in var.dimensions: dimstrs[var.dimensions.index(tname)] = tname
        if iX is not None: dimstrs[iX] = var.dimensions[iX]
        if iY is not None: dimstrs[iY] = var.dimensions[iY]
        if verbose: print '{} {}({})'.format(var.typecode(), name, ','.join(dimstrs))

######################################################################
# create global netcdf file
ncout = netcdf_file(outname, 'w', **writeopts)

# global attributes
for name,att in gatt.items():
    setattr(ncout, name, att)

# create dimensions
for name,n in dims.items():
    ncout.createDimension(name, n)

# create variables with attributes
vars = {}
for name,var in varprops.items():
    dtype = np.dtype(var['dtype']).newbyteorder('>')
#    if verbose: print 'Creating variable', name, dtype, var['dimensions']
    vars[name] = ncout.createVariable(name, dtype, var['dimensions'])
    for attname,att in var['ncattrs'].items():
        setattr(vars[name], attname, att)

ncout.write_metadata()

ncs = {files0[0]: nc}
for fname in files0:
    if fname not in ncs:
        ncs[fname] = nc = netcdf_file(fname, 'r', **readopts)

# assemble non-record variable data
if verbose: print 'Writing variable data:'
indstrings = {}
for name,pos,isrec in ncout.begins:
    if not isrec:
        if verbose: print name
        prop = varprops[name]
        vardims = prop['dimensions']
        var = vars[name]
        indx = len(vardims)*[slice(None)]
        iX = prop['iX']
        iY = prop['iY']
        data = np.empty(var.shape, var.data.dtype)
        for fname,nc in ncs.items():
            tn = nc.tile_number - 1
            if iX is not None: indx[iX] = Xslice[tn]
            if iY is not None: indx[iY] = Yslice[tn]
            data[tuple(indx)] = nc.read_var(name)

        ncout.write_var(name, data)
        del data
    else:  # isrec
        if not havetime:
            raise ValueError('record variables, but no time')

# assemble record variable data
if havetime:
    irec = 0
    for fnames in filess:
        if irec:
            ncs = {}
            for fname in fnames:
                ncs[fname] = nc = netcdf_file(fname, 'r', **readopts)

        nrec = nc.numrecs
        for irecin in range(nrec):
            for name,pos,isrec in ncout.begins:
                if isrec:
                    if verbose: print irec+irecin, name
                    prop = varprops[name]
                    vardims = prop['dimensions'][1:]
                    var = vars[name]
                    indx = len(vardims)*[slice(None)]
                    iX = prop['iX']
                    iY = prop['iY']
                    data = np.empty(var.data.shape[1:], var.data.dtype)
                    for fname,nc in ncs.items():
                        tn = nc.tile_number - 1
                        if iX is not None: indx[iX-1] = Xslice[tn]
                        if iY is not None: indx[iY-1] = Yslice[tn]
                        data[tuple(indx)] = nc.read_recvar(name, irecin)

                    ncout.write_recvar(name, irec+irecin, data)
                    del data

        irec += nrec
            
        for nc in ncs.values():
            nc.close()

ncout.close()



More information about the MITgcm-support mailing list