[MITgcm-support] Re: pressure
chris hill
cnh at mit.edu
Wed Sep 6 08:20:47 EDT 2006
Hi Bill,
Using the diagnostics package you can request
> PHIBOT ocean bottom pressure / top. atmos geo-Potential
> ETAN Perturbation of Surface (pressure, height) (Pa,m)
> PHIHYD Hydrostatic (ocean) pressure / (atmos) geo-Potential
or in an mnc pickup file there is a field labeled PHIHYD which
is also the Hydrostatic pressure Anomaly
If you haven't used the diagnostics package before, below is a list of
whats available -
> [MITgcm-support] diagnostics package
> Dimitris Menemenlis menemenlis at sbcglobal.net
> Mon Apr 11 18:58:28 EDT 2005
>
> * Previous message: [MITgcm-support] diagnostics package
> * Next message: [MITgcm-support] diagnostics package
> * Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]
>
> Jeff, first time step you get a file called available_diagnostics.log,
> attached, which contains the infor you're looking for. D.
>
> --
> Dimitris Menemenlis <menemenlis at jpl.nasa.gov>
> Jet Propulsion Lab, California Institute of Technology
> MS 300-323, 4800 Oak Grove Dr, Pasadena CA 91109-8099
> tel: 818-354-1656; fax: 818-393-6720
> -------------- next part --------------
> Total Nb of available Diagnostics: ndiagt= 311
> ------------------------------------------------------------------------
> Num |<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
> ------------------------------------------------------------------------
> 1 |UFLUX | 1 |UM 002L1 |N/m2 |Zonal Wind Surface Stress (N/m^2)
> 2 |VFLUX | 1 |VM 001L1 |N/m2 |Meridional Wind Surface Stress (N/m^2)
> 3 |HFLUX | 1 |SM L1 |watt/m2 |Sensible Heat Flux (pos.upwrd) (W/m^2)
> 4 |EFLUX | 1 |SM L1 |watt/m2 |Latent Heat Flux (pos.upwrd) (W/m^2)
> 5 |QICE | 1 |SM L1 |watt/m2 |Heat Conduction through Sea-Ice (W/m^2)
> 6 |RADLWG | 1 |SM L1 |watt/m2 |Net Upward Longwave Flux at the Ground (W/m^2)
> 7 |RADSWG | 1 |SM P L1 |watt/m2 |Net Downward Shortwave Flux at the Ground (W/m^2)
> 8 |RI | 15 |SM LL |non-dimensional |Richardson Number (non-dimensional)
> 9 |CT | 1 |SM L1 |non-dimensional |Surface Drag Coef for Scalars (non-dimensional)
> 10 |CU | 1 |SM L1 |non-dimensional |Surface Drag Coef for Winds (non-dimensional)
> 11 |KM | 15 |SM LL |m2/sec |Eddy Diffusivity Coefficient for Momentum (m^2/s)
> 12 |KH | 15 |SM LL |m2/sec |Eddy Diffusivity Coefficient for Scalars (m^2/s)
> 13 |TURBU | 15 |UM 014ML |m/s/day |Zonal Wind Tendency from Turbulence (m/s/day)
> 14 |TURBV | 15 |VM 013ML |m/s/day |Meridional Wind Tendency from Turbulence (m/s/day)
> 15 |TURBT | 15 |SM ML |K/day |Temperature Tendency from Turbulence (K/day)
> 16 |TURBQ | 15 |SM ML |gram/kg/day |Specific Humidity Tendency from Turbulence (g/kg/day)
> 17 |MOISTT | 15 |SM ML |K/day |Temperature Tendency due to Moist Processes (K/day)
> 18 |MOISTQ | 15 |SM ML |gram/kg/day |Specific Humidity Tendency due to Moist Processes (g/kg/day)
> 19 |RADLW | 15 |SM ML |K/day |Temperature Tendency due to Longwave Radiation (K/day)
> 20 |RADSW | 15 |SM P ML |K/day |Temperature Tendency due to Shortwave Radiation (K/day)
> 21 |PREACC | 1 |SM P L1 |mm/day |Total Precipitation (mm/day)
> 22 |PRECON | 1 |SM P L1 |mm/day |Convective Precipitation (mm/day)
> 23 |TUFLUX | 15 |UM 024LL |N/m2 |Turbulent Flux of Zonal Momentum (N/m^2)
> 24 |TVFLUX | 15 |VM 023LL |N/m2 |Turbulent Flux of Meridional Momentum (N/m^2)
> 25 |TTFLUX | 15 |SM LL |watt/m2 |Turbulent Flux of Sensible Heat (W/m^2)
> 26 |TQFLUX | 15 |SM LL |watt/m2 |Turbulent Flux of Latent Heat (W/m^2)
> 27 |CN | 1 |SM L1 |non-dimensional |Neutral Drag Coefficient (non-dimensional)
> 28 |WINDS | 1 |SM L1 |m/sec |Surface Wind Speed (m/s)
> 29 |DTSRF | 1 |SM L1 |K |Air/Surface Virtual Temperature Difference (deg K)
> 30 |TGROUND | 1 |SM L1 |K |Ground Temperature (deg K)
> 31 |TS | 1 |SM L1 |K |Surface Air Temperature (deg K)
> 32 |DTG | 1 |SM L1 |K |Ground Temperature Adjustment (deg K)
> 33 |QG | 1 |SM P L1 |gram/kg |Ground Specific Humidity (g/kg)
> 34 |QS | 1 |SM P L1 |gram/kg |Saturation Surface Specific Humidity (g/kg)
> 35 |TGRLW | 1 |SM L1 |K |Ground Temperature used by LW Radiation (deg K)
> 36 |LWGUP | 1 |SM L1 |watt/m2 |Upward Longwave Radiation at the Ground (W/m^2)
> 37 |OLR | 1 |SM U1 |watt/m2 |Outgoing Longwave Radiation (W/m^2)
> 38 |OLRCLR | 1 |SM U1 |watt/m2 |Clear Sky Outgoing Longwave Radiation (W/m^2)
> 39 |LWGCLR | 1 |SM L1 |watt/m2 |Clear Sky Net Longwave Flux at the Ground (W/m^2)
> 40 |LWCLR | 15 |SM ML |K/day |Clear Sky Longwave Radiation Heating Rates (K/day)
> 41 |TLW | 15 |SM ML |K |Temperature used by Radiation (deg K)
> 42 |SHRAD | 15 |SM P ML |gram/kg |Specific Humidity used by Radiation (g/kg)
> 43 |OZLW | 15 |SM ML |non-dimensional |Ozone mixing ratio used by Longwave Radiation (non-dimensional)
> 44 |CLDRAS | 15 |SM P ML |0-1 |Convective Cloud Fraction (0-1)
> 45 |CLDTOT | 15 |SM P ML |0-1 |3-D Total Cloud Fraction (0-1)
> 46 |LWGDOWN | 1 |SM L1 |watt/m2 |Downward Longwave Radiation at the Ground (W/m^2)
> 47 |GWDT | 15 |SM ML |K/day |Temperature Tendency due to Gravity Wave Drag (K/day)
> 48 |RADSWT | 1 |SM P U1 |watt/m2 |Incident Shortwave Radiation at TOA (W/m^2)
> 49 |TAUCLD | 15 |SM C050ML |non-dimensional |Counted Cloud Optical Depth (non-dimensional) per 100 mb
> 50 |TAUCLDC | 15 |SM D ML |count |Cloud Optical Depth Counter
> 51 |CLDLOW | 1 |SM P M1 |0-1 |Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)
> 52 |EVAP | 1 |SM L1 |mm/day |Surface Evaporation (mm/day)
> 53 |DPDT | 1 |SM L1 |hPa/day |Surface Pressure Tendency (hPa/day)
> 54 |UAVE | 15 |UU 055MR |m/s |Average Zonal Wind (m/s)
> 55 |VAVE | 15 |VV 054MR |m/s |Average Meridional Wind (m/s)
> 56 |TAVE | 15 |SM MR |K |Average Potential Temperature (K)
> 57 |QAVE | 15 |SM MR |gram/kg |Average Specific Humidity (g/kg)
> 58 |OMEGA | 15 |SM ML |hPa/day |Vertical Velocity (hPa/day)
> 59 |DUDT | 15 |UU 060ML |m/s/day |Total Zonal Wind Tendency (m/s/day)
> 60 |DVDT | 15 |VV 059ML |m/s/day |Total Meridional Wind Tendency (m/s/day)
> 61 |DTDT | 15 |SM ML |K/day |Total Temperature Tendency (K/day)
> 62 |DQDT | 15 |SM ML |gram/kg/day |Total Specific Humidity Tendency (g/kg/day)
> 63 |VORT | 15 |SM ML |(e-4 sec-1) |Relative Vorticity (x10^-4 sec^-1)
> 64 |PSIGDOT | 15 |SM LL |hPa/day |Pi-Weighted Vertical Sigma Velocity (hPa/day)
> 65 |DTLS | 15 |SM ML |K/day |Temperature Tendency due to Stratiform Processes (K/day)
> 66 |DQLS | 15 |SM ML |gram/kg/day |Specific Humidity Tendency from Stratiform Processes (g/kg/day)
> 67 |USTAR | 1 |SM L1 |m/sec |Friction Velocity (m/s)
> 68 |Z0 | 1 |SM L1 |m |Surface Roughness Z0 (m)
> 69 |FRQTRB | 14 |SM P MM |0-1 |Frequency of Turbulence (0-1)
> 70 |PBL | 1 |SM P M1 |hPa |Estimated PBL Depth (hPa)
> 71 |SWCLR | 15 |SM P ML |K/day |Clear Sky Shortwave Heating Rates (K/day)
> 72 |OSR | 1 |SM P U1 |watt/m2 |Outgoing Shortwave Radiation (W/m^2)
> 73 |OSRCLR | 1 |SM P U1 |watt/m2 |Clear Sky Outgoing Shortwave Radiation (W/m^2)
> 74 |CLDMAS | 15 |SM P LL |g/m2/sec |Cloud Mass Flux (g/m^2/sec)
> 75 |UWND | 15 |UU 076ML |m/sec |Time-Averaged Zonal Wind (m/s)
> 76 |VWND | 15 |VV 075ML |m/sec |Time-Averaged Meridional Wind (m/s)
> 77 |TMPU | 15 |SM ML |K |Time-Averaged Temperature (deg K)
> 78 |SPHU | 15 |SM P ML |gram/kg |Time-Averaged Specific Humidity (g/kg)
> 79 |RFT | 15 |SM ML |K/day |Temperature Tendency due to Rayleigh Friction (K/day)
> 80 |PS | 1 |SM L1 |hPa |Time-Averaged Surface Pressure (hPa)
> 81 |TKE | 15 |SM P LL |(m/sec)2 |Time-Averaged Turbulent Kinetic Energy (m/s)^2
> 82 |SWGCLR | 1 |SM P L1 |watt/m2 |Clear Sky Net Downward SW Radiation at the Ground (W/m^2)
> 83 |PAVE | 1 |SM L1 |hPa/day |Average Surface Pressure (hPa)
> 84 |SDIAG1 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #1
> 85 |SDIAG2 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #2
> 86 |UDIAG1 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #1
> 87 |UDIAG2 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #2
> 88 |DIABU | 15 |UU 089ML |m/s/day |Zonal Wind Tendency due to Diabatic Forcing (m/s/day)
> 89 |DIABV | 15 |VV 088ML |m/s/day |Meridional Wind Tendency due to Diabatic Forcing (m/s/day)
> 90 |DIABT | 15 |SM ML |K/day |Temperature Tendency due to Diabatic Forcing (K/day)
> 91 |DIABQ | 15 |SM ML |gram/kg/day |Specific Humidity Tendency due to Diabatic Forcing (g/kg/day)
> 92 |RFU | 15 |UU 093ML |m/s/day |Zonal Wind Tendency due to Rayleigh Friction (m/s/day)
> 93 |RFV | 15 |VV 092ML |m/s/day |Meridional Wind Tendency due to Rayleigh Friction (m/s/day)
> 94 |GWDU | 15 |UM 095ML |m/s/day |Zonal Wind Tendency due to Gravity Wave Drag (m/s/day)
> 95 |GWDV | 15 |VM 094ML |m/s/day |Meridional Wind Tendency due to Gravity Wave Drag (m/s/day)
> 96 |GWDUS | 1 |UM 097L1 |N/m2 |Zonal Wind Gravity Wave Surface Stress (N/m^2)
> 97 |GWDVS | 1 |VM 096L1 |N/m2 |Meridional Wind Gravity Wave Surface Stress (N/m^2)
> 98 |GWDUT | 1 |UM 099U1 |N/m2 |Zonal Wind Gravity Wave Stress at Model Top (N/m^2)
> 99 |GWDVT | 1 |VM 098U1 |N/m2 |Meridional Wind Gravity Wave Stress at Model Top (N/m^2)
> ------------------------------------------------------------------------
> Num |<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
> ------------------------------------------------------------------------
> 100 |LZRAD | 15 |SM ML |mg/kg |Estimated Cloud Liquid Water used in Radiation (mg/kg)
> 101 |SLP | 1 |SM L1 |hPa |Time-Averaged Sea-Level Pressure (mb)
> 102 |VAVEUQ | 1 |UM 103M1 |m/s gram/kg |Vertically Averaged UWND*SPHU (m/s g/kg)
> 103 |VAVEVQ | 1 |VM 102M1 |m/s gram/kg |Vertically Averaged VWND*SPHU (m/s g/kg)
> 104 |VAVEUT | 1 |UM 105M1 |m/s K |Vertically Averaged UWND*TMPU (m/s deg K)
> 105 |VAVEVT | 1 |VM 104M1 |m/s K |Vertically Averaged VWND*TMPU (m/s deg K)
> 106 |CLDFRC | 1 |SM P M1 |0-1 |2-D Total Cloud Fraction (0-1)
> 107 |TPW | 1 |SM P M1 |gram/cm2 |Total Precipitable Water (g/cm^2)
> 108 |U2M | 1 |UM 109M1 |m/sec |Zonal Wind Interpolated to 2 Meters (m/s)
> 109 |V2M | 1 |VM 108M1 |m/sec |Meridional Wind Interpolated to 2 Meters (m/s)
> 110 |T2M | 1 |SM M1 |K |Temperature Interpolated to 2 Meters (deg K)
> 111 |Q2M | 1 |SM P M1 |gram/kg |Specific Humidity Interpolated to 2 Meters (g/kg)
> 112 |U10M | 1 |UM 113M1 |m/sec |Zonal Wind Interpolated to 10 Meters (m/s)
> 113 |V10M | 1 |VM 112M1 |m/sec |Meridional Wind Interpolated to 10 Meters (m/s)
> 114 |T10M | 1 |SM M1 |K |Temperature Interpolated to 10 Meters (deg K)
> 115 |Q10M | 1 |SM P M1 |gram/kg |Specific Humidity Interpolated to 10 Meters (g/kg)
> 116 |DTRAIN | 15 |SM P LL |g/m2/sec |Detrainment Cloud Mass Flux (g/m^2/sec)
> 117 |QFILL | 15 |SM ML |gram/kg/day |Filling of Negative Specific Humidity (g/kg/day)
> 118 |VAVEQAVE| 1 |SM M1 |mm/day |Vertically Averaged QAVE (mm/day)
> 119 |VAVEQFIL| 1 |SM P L1 |mm/day |Vertically Averaged QFILL (mm/day)
> 120 | | 0 | | |
> 121 | | 0 | | |
> 122 | | 0 | | |
> 123 | | 0 | | |
> 124 |SDIAG3 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #3
> 125 |SDIAG4 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #4
> 126 |SDIAG5 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #5
> 127 |SDIAG6 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #6
> 128 |SDIAG7 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #7
> 129 |SDIAG8 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #8
> 130 |SDIAG9 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #9
> 131 |SDIAG10 | 1 |SM L1 |user-defined |User-Defined Surface Diagnostic #10
> 132 |UDIAG3 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #3
> 133 |UDIAG4 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #4
> 134 |UDIAG5 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #5
> 135 |UDIAG6 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #6
> 136 |UDIAG7 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #7
> 137 |UDIAG8 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #8
> 138 |UDIAG9 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #9
> 139 |UDIAG10 | 15 |SM ML |user-defined |User-Defined Upper-Air Diagnostic #10
> 140 |CLDMID | 1 |SM P M1 |0-1 |Mid-Level (700-400 hPa) Cloud Fraction (0-1)
> 141 |CLDHI | 1 |SM P M1 |0-1 |High-Level (above 400 hPa) Cloud Fraction (0-1)
> 142 |TAULOW | 1 |SM PC150M1 |non-dimensional |Low-Level (1000-700 hPa) Optical Depth
> 143 |TAUMID | 1 |SM PC151M1 |non-dimensional |Mid-Level (700-400 hPa) Optical Depth
> 144 |TAUHI | 1 |SM PC152M1 |non-dimensional |High-Level (above 400 hPa) Optical Depth
> 145 |CLDNP | 15 |SM ML |0-1 |Non-Precipitating Cloud Fraction (0-1)
> 146 |CLDPRS | 1 |SM PC147M1 |hPa |Cloud Top Pressure (when cloudy) (hPa)
> 147 |CTPCNT | 1 |SM D M1 |count |Cloud Top Pressure Counter
> 148 |CLDTMP | 1 |SM PC149M1 |K |Cloud Top Temperature (when cloudy) (deg K)
> 149 |CTTCNT | 1 |SM D M1 |count |Cloud Top Temperature Counter
> 150 |TAULOWC | 1 |SM D M1 |count |Low-Level Optical Depth Counter
> 151 |TAUMIDC | 1 |SM D M1 |count |Mid-Level Optical Depth Counter
> 152 |TAUHIC | 1 |SM D M1 |count |High-Level Optical Depth Counter
> 153 |TCANOPY | 1 |SM L1 |K |Skin Temperature of the Canopy/Soil (SST over water) (deg K)
> 154 |TDEEP | 1 |SM L1 |K |Deep Soil Temperature (deg K)
> 155 |QCANOPY | 1 |SM L1 |gram/kg |Specific Humidity of the Canopy (g/kg)
> 156 |SMSHAL | 1 |SM L1 |0-1 |Soil Moisture Field Capacity Fraction in Shallow (5 mm) Layer
> 157 |SMROOT | 1 |SM L1 |0-1 |Soil Moisture Field Capacity Fraction in Root Zone
> 158 |SMDEEP | 1 |SM L1 |0-1 |Soil Moisture Field Capacity Fraction in Recharge Layer
> 159 |CAPACITY| 1 |SM L1 |mm |Canopy Interception Reservoir (mm)
> 160 |SNOW | 1 |SM L1 |mm water equiv |Snow Depth (mm water equivalent)
> 161 |RAINCON | 1 |SM L1 |mm/day |Convective Rainfall (liquid precipitate) (mm/day)
> 162 |RAINLSP | 1 |SM L1 |mm/day |Large-scale Rainfall (liquid precipitate) (mm/day)
> 163 |SNOWFALL| 1 |SM P L1 |mm/day |Total Snowfall (solid precipitate) (mm/day)
> 164 |RUNOFF | 1 |SM L1 |mm/sec |Water from precipitation not infiltrated into soil (mm/s)
> 165 |FWSOIL | 1 |SM L1 |mm/sec |Rainwater Infiltration into top soil layer (mm/s)
> 166 |GDRAIN | 1 |SM L1 |mm/sec |Diffusion of Moisture across bottom of root zone (mm/s)
> 167 |SNOWMELT| 1 |SM L1 |mm/sec |Rate of Snow Melt (mm/s)
> 168 |ERESV | 1 |SM L1 |watt/m2 |Latent Heat Flux from Canopy Interception Reservoir (W/m^2)
> 169 |ESOIL | 1 |SM L1 |watt/m2 |Latent Heat Flux from Bare Soil (W/m^2)
> 170 |EVEG | 1 |SM L1 |watt/m2 |Latent Heat Flux (Transpiration) from Vegetated Surface (W/m^2)
> 171 |ESNOW | 1 |SM L1 |watt/m2 |Latent Heat Flux from Snow Pack (W/m^2)
> 172 |PARDF | 1 |SM P L1 |watt/m2 |Diffuse-beam Photosynthetically Active Radiation (W/m^2)
> 173 |PARDR | 1 |SM P L1 |watt/m2 |Direct-beam Photosynthetically Active Radiation (W/m^2)
> 174 |LAI | 1 |SM L1 |percent |Leaf Area Index (%)
> 175 |GREEN | 1 |SM L1 |percent |Green-ness Index (%)
> 176 |DLWDTC | 1 |SM L1 |watt/m2/K |Derivative of Upward LW Radiation wrt TCANOPY (W/m^2 /deg K)
> 177 |DHDTC | 1 |SM L1 |watt/m2/K |Derivative of Sensible Heat Flux wrt TCANOPY (W/m^2 /deg K)
> 178 |DEDTC | 1 |SM L1 |watt/m2/K |Derivative of Latent Heat Flux wrt TCANOPY (W/m^2 /deg K)
> 179 |VDTMOIST| 1 |SM M1 |K/day |Vertically Averaged MOISTT (K/day)
> 180 |VDTTURB | 1 |SM M1 |K/day |Vertically Averaged TURBT (K/day)
> 181 |VDTLWRAD| 1 |SM M1 |K/day |Vertically Averaged RADLW (K/day)
> 182 |VDTSWRAD| 1 |SM P M1 |K/day |Vertically Averaged RADSW (K/day)
> 183 |VAVETAVE| 1 |SM M1 |K/day |Vertically Averaged TAVE (K/day)
> 184 |PSUBCLD | 1 |SM PC185M1 |hPa |Pressure Thickness of the RAS Subcloud Layer (mb)
> 185 |PSUBCLDC| 1 |SM PD M1 |count |Pressure Thickness of the RAS Subcloud Layer Counter
> 186 |LCL | 1 |SM L1 |hPa |Lifting Condensation Level (mb)
> 187 |SDIAGC | 1 |SM C188L1 |user-defined |User-Defined Counted Surface Diagnostic
> 188 |SDIAGCC | 1 |SM D L1 |count |User-Defined Counted Surface Diagnostic Counter
> 189 | | 0 | 0 | |
> 190 |EVPOT | 1 |SM L1 |watt/m2 |Potential Evapotranspiration (W/m^2)
> 191 |RHCHECK | 1 |SM P L1 |mm/day |Net precip due to supersaturation above critical RH (mm/day)
> 192 |DHDQA | 1 |SM L1 |watt/m2 |Derivative of Sensible Heat wrt Canopy Humidity (W/m^2)
> 193 |DEDQA | 1 |SM L1 |watt/m2 |Derivative of Latent Heat wrt Canopy Humidity (W/m^2)
> 194 |DTC | 1 |SM L1 |K/sec |Total Change in Canopy Temperature (deg/sec)
> 195 |DQC | 1 |SM L1 |sec-1 |Change in Canopy Humidity (kg/kg/sec)
> 196 |TCDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Energy Term (deg/sec)
> 197 |RADDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Net Radiation Term (deg/sec)
> 198 |SENDDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Sensible Heat Term (deg/sec)
> 199 |LATDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Latent Heat Term (deg/sec)
> ------------------------------------------------------------------------
> Num |<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
> ------------------------------------------------------------------------
> 200 |TDDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Ground Temp Term (deg/sec)
> 201 |QCDTC | 1 |SM L1 |K/sec |Change in Canopy Temperature - Humidity Term (deg/sec)
> 202 |TRBQLIQ | 15 |SM ML |mg/kg |Cloud Liquid Water Generated in Turbulence (mg/kg)
> 203 |TRBFCC | 15 |SM ML |0-1 |Cloud Fraction Generated in Turbulence (fraction)
> 204 |ALBEDO | 1 |SM C210L1 |0-1 |Mean Surface Albedo (SW_Up/SW_Down) 0-1
> 205 |ALBVISDR| 1 |SM L1 |0-1 |Direct Beam VIS Surface Albedo (0-1)
> 206 |ALBVISDF| 1 |SM L1 |0-1 |Diffuse Beam VIS Surface Albedo (0-1)
> 207 |ALBNIRDR| 1 |SM L1 |0-1 |Direct Beam NIR Surface Albedo (0-1)
> 208 |ALBNIRDF| 1 |SM L1 |0-1 |Diffuse Beam NIR Surface Albedo (0-1)
> 209 |TAUAVE | 15 |SM ML |non-dimensional |Averaged Cloud Optical Depth (non-dimensional) per 100 mb
> 210 |ALBEDOC | 1 |SM D L1 |count |Surface Albedo Counter
> 211 |RHCHECKT| 15 |SM ML |K/day |Temperature Change due to humidity above critical RH (K/day)
> 212 |RHCHECKQ| 15 |SM ML |g/kg/day |Spec.Humid. Change due to humidity above critical RH (g/kg/day)
> 213 |CLDLSP | 15 |SM P ML |0-1 |Large-Scale Cloud Fraction (0-1)
> 214 |LZLOW | 1 |SM P L1 |mg/cm2 |Vert integrated low-level (below 700mb) cloud water (mg/cm**2)
> 215 |LZMID | 1 |SM P L1 |mg/cm2 |Vert integrated mid-level (700-400mb) cloud water (mg/cm**2)
> 216 |LZHI | 1 |SM P L1 |mg/cm2 |Vert integrated high-level (above 400mb) cloud water (mg/cm**2)
> 217 |LZTOT | 1 |SM P L1 |mg/cm2 |Vertically integrated total suspended cloud water (mg/cm**2)
> 218 |CAPE | 1 |SM P L1 |mb m2/sec2 |Convective Available Potential Energy
> 219 |HSUBCL | 1 |SM P L1 |m2/sec2 |Moist Static Energy in RAS subcloud layer
> 220 |HSTAR | 15 |SM P ML |m2/sec2 |Saturation Moist Static Energy
> 221 |CONT | 15 |SM ML |K/day |Temperature Tendency due to Convective Precipitation (K/day)
> 222 |CONQ | 15 |SM ML |g/kg/day |Moisture Tendency due to Convective Precipitation (g/kg/day)
> 223 |LST | 15 |SM ML |K/day |Temperature Tendency due to Large Scale Precipitation (K/day)
> 224 |LSQ | 15 |SM ML |g/kg/day |Moisture Tendency due to Large Scale Precipitation (g/kg/day)
> 225 |CONEVPT | 15 |SM ML |K/day |Temperature Tendency due to Conv Rain Re-evaporation (K/day)
> 226 |CONEVPQ | 15 |SM ML |g/kg/day |Moisture Tendency due to Conv Rain Re-evaporation (g/kg/day)
> 227 |LSEVPT | 15 |SM ML |K/day |Temperature Tendency due to Large Scale Rain Re-evap (K/day)
> 228 |LSEVPQ | 15 |SM ML |g/kg/day |Moisture Tendency due to Large Scale Rain Re-evap (g/kg/day)
> 229 |GWCUMID | 1 |UM 230L1 |m/sec |Mid-Lev Mean U-Wind for Gravity Wave Drag w/Clouds (m/sec)
> 230 |GWCVMID | 1 |VM 229L1 |m/sec |Mid-Lev Mean V-Wind for Gravity Wave Drag w/Clouds (m/sec)
> 231 |CLDSTD | 1 |SM L1 |m |Mid-Lev Cloud Perturb Length for Gravity Wave Drag w/Clouds (m)
> 232 |GWCUBAR | 1 |UM 233L1 |m/sec |Mid-Lev Perturb U-Wind for Gravity Wave Drag w/Clouds (m/sec)
> 233 |GWCVBAR | 1 |VM 232L1 |m/sec |Mid-Lev Perturb V-Wind for Gravity Wave Drag w/Clouds (m/sec)
> 234 |GWCUS | 1 |UM 235L1 |N/m2 |Mid-Lev U-Wind Stress for Gravity Wave Drag w/Clouds (N/m^2)
> 235 |GWCVS | 1 |VM 234L1 |N/m2 |Mid-Lev V-Wind Stress for Gravity Wave Drag w/Clouds (N/m^2)
> 236 |GWCU | 15 |UM 237ML |m/sec/day |U-Wind Tendency due to Gravity Wave Drag w/Clouds (m/s/day)
> 237 |GWCV | 15 |VM 236ML |m/sec/day |V-Wind Tendency due to Gravity Wave Drag w/Clouds (m/s/day)
> 238 |ETAN | 1 |SM M1 |m |Perturbation of Surface (pressure, height) (Pa,m)
> 239 |ETANSQ | 1 |SM M1 |m^2 |Square of Perturbation of Sfc (Pa^2,m^2)
> 240 |DETADT2 | 1 |SM M1 |m^2/s^2 |Square of Eta (Surf.P,SSH) Tendency ((r_unit/s)^2)
> 241 |THETA | 15 |SM MR |degC |Potential Temperature (degC,K)
> 242 |SALT | 15 |SM MR |psu |Salt or Water Vapor mixing ratio (g/kg)
> 243 |UVEL | 15 |UU 244MR |m/s |Zonal Component of Velocity (m/s)
> 244 |VVEL | 15 |VV 243MR |m/s |Meridional Component of Velocity (m/s)
> 245 |WVEL | 15 |WM LR |m/s |Vertical Component of Velocity (r_units/s)
> 246 |THETASQ | 15 |SM MR |degC^2 |Square of Potential Temperature (K^2)
> 247 |SALTSQ | 15 |SM MR |(psu)^2 |Square of Salt or Water Vapor mix rat (g^2/kg^2)
> 248 |UVELSQ | 15 |UU 249MR |m^2/s^2 |Square of Zonal Comp of Velocity (m^2/s^2)
> 249 |VVELSQ | 15 |VV 248MR |m^2/s^2 |Square of Meridional Comp of Velocity (m^2/s^2)
> 250 |WVELSQ | 15 |WM LR |m^2/s^2 |Square of Vertical Comp of Velocity (m^2/s^2)
> 251 |UV_VEL_C| 15 |UM 251MR |m^2/s^2 |Product of horizontal Comp of velocity (cell center)
> 252 |UV_VEL_Z| 15 |UZ 252MR |m^2/s^2 |Meridional Transport of Zonal Momentum (m^2/s^2)
> 253 |WU_VEL | 15 |WU LR |m.m/s^2 |Vertical Transport of Zonal Momentum (m^2/s^2)
> 254 |WV_VEL | 15 |WV LR |m.m/s^2 |Vertical Transport of Meridional Momentum (m^2/s^2)
> 255 |UVELMASS| 15 |UU 256MR |m/s |Zonal Mass-Weighted Comp of Velocity (m/s)
> 256 |VVELMASS| 15 |VV 255MR |m/s |Meridional Mass-Weighted Comp of Velocity (m/s)
> 257 |WVELMASS| 15 |WM LR |m/s |Vertical Mass-Weighted Comp of Velocity (m/s)
> 258 |UTHMASS | 15 |UU 259MR |degC.m/s |Zonal Mass-Weight Transp of Pot Temp (K.m/s)
> 259 |VTHMASS | 15 |VV 258MR |degC.m/s |Meridional Mass-Weight Transp of Pot Temp (K.m/s)
> 260 |WTHMASS | 15 |WM LR |degC.m/s |Vertical Mass-Weight Transp of Pot Temp (K.m/s)
> 261 |USLTMASS| 15 |UU 262MR |psu.m/s |Zonal Mass-Weight Transp of Salt (g/kg.m/s)
> 262 |VSLTMASS| 15 |VV 261MR |psu.m/s |Meridional Mass-Weight Transp of Salt (g/kg.m/s)
> 263 |WSLTMASS| 15 |WM LR |psu.m/s |Vertical Mass-Weight Transp of Salt (g/kg.m/s)
> 264 |UVELTH | 15 |UU 265MR |degC.m/s |Zonal Transp of Pot Temp (K.m/s)
> 265 |VVELTH | 15 |VV 264MR |degC.m/s |Meridional Transp of Pot Temp (K.m/s)
> 266 |WVELTH | 15 |WM LR |degC.m/s |Vertical Transp of Pot Temp (K.m/s)
> 267 |UVELSLT | 15 |UU 268MR |psu.m/s |Zonal Transp of Salt (g/kg.m/s)
> 268 |VVELSLT | 15 |VV 267MR |psu.m/s |Meridional Transp of Salt (g/kg.m/s)
> 269 |WVELSLT | 15 |WM LR |psu.m/s |Vertical Transp of Salt (g/kg.m/s)
> 270 |RHOAnoma| 15 |SM MR |kg/m^3 |Density Anomaly (=Rho-rhoConst)
> 271 |RHOANOSQ| 15 |SM MR |kg^2/m^6 |Square of Density Anomaly (=(Rho-rhoConst)^2)
> 272 |URHOMASS| 15 |UU 273MR |kg/m^2/s |Zonal Transport of Density
> 273 |VRHOMASS| 15 |VV 272MR |kg/m^2/s |Meridional Transport of Density
> 274 |WRHOMASS| 15 |WM LR |kg/m^2/s |Vertical Transport of Potential Density
> 275 |PHIHYD | 15 |SM MR |m^2/s^2 |Hydrostatic (ocean) pressure / (atmos) geo-Potential
> 276 |PHIBOT | 1 |SM M1 |m^2/s^2 |ocean bottom pressure / top. atmos geo-Potential
> 277 |PHIBOTSQ| 1 |SM M1 |m^4/s^4 |Square of ocean bottom pressure / top. geo-Potential
> 278 |DRHODR | 15 |SM LR |kg/m^4 |Stratification: d.Sigma/dr (kg/m3/r_unit)
> 279 |VISCA4 | 15 |SM MR |m^4/s |Biharmonic Viscosity Coefficient in (m4/s)
> 280 |VISCAH | 15 |SM MR |m^2/s |Harmonic Viscosity Coefficient in (m2/s)
> 281 |TAUX | 1 |SU U1 |N/m^2 |zonal surface wind stress, >0 increases uVel
> 282 |TAUY | 1 |SV U1 |N/m^2 |meridional surf. wind stress, >0 increases vVel
> 283 |TFLUX | 1 |SM U1 |W/m^2 |net surface heat flux, >0 increases theta
> 284 |TRELAX | 1 |SM U1 |W/m^2 |surface temperature relaxation, >0 increases theta
> 285 |TICE | 1 |SM U1 |W/m^2 |heat from melt/freeze of sea-ice, >0 increases theta
> 286 |SFLUX | 1 |SM U1 |g/m^2/s |net surface salt flux, >0 increases salt
> 287 |SRELAX | 1 |SM U1 |g/m^2/s |surface salinity relaxation, >0 increases salt
> 288 |ADVr_TH | 15 |WM LR |degC.m^3/s |Vertical Advective Flux of Pot.Temperature
> 289 |ADVx_TH | 15 |UU 290MR |degC.m^3/s |Zonal Advective Flux of Pot.Temperature
> 290 |ADVy_TH | 15 |VV 289MR |degC.m^3/s |Meridional Advective Flux of Pot.Temperature
> 291 |DFrE_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part)
> 292 |DIFx_TH | 15 |UU 293MR |degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature
> 293 |DIFy_TH | 15 |VV 292MR |degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature
> 294 |DFrI_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part)
> 295 |ADVr_SLT| 15 |WM LR |psu.m^3/s |Vertical Advective Flux of Salinity
> 296 |ADVx_SLT| 15 |UU 297MR |psu.m^3/s |Zonal Advective Flux of Salinity
> 297 |ADVy_SLT| 15 |VV 296MR |psu.m^3/s |Meridional Advective Flux of Salinity
> 298 |DFrE_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part)
> 299 |DIFx_SLT| 15 |UU 300MR |psu.m^3/s |Zonal Diffusive Flux of Salinity
> ------------------------------------------------------------------------
> Num |<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
> ------------------------------------------------------------------------
> 300 |DIFy_SLT| 15 |VV 299MR |psu.m^3/s |Meridional Diffusive Flux of Salinity
> 301 |DFrI_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part)
> 302 |GM_VisbK| 1 |SM P M1 |m^2/s |Mixing coefficient from Visbeck etal parameterization
> 303 |GM_Kux | 15 |UU P 304MR |m^2/s |K_11 element (U.point, X.dir) of GM-Redi tensor
> 304 |GM_Kvy | 15 |VV P 303MR |m^2/s |K_22 element (V.point, Y.dir) of GM-Redi tensor
> 305 |GM_Kuz | 15 |UU 306MR |m^2/s |K_13 element (U.point, Z.dir) of GM-Redi tensor
> 306 |GM_Kvz | 15 |VV 305MR |m^2/s |K_23 element (V.point, Z.dir) of GM-Redi tensor
> 307 |GM_Kwx | 15 |UM 308LR |m^2/s |K_31 element (W.point, X.dir) of GM-Redi tensor
> 308 |GM_Kwy | 15 |VM 307LR |m^2/s |K_32 element (W.point, Y.dir) of GM-Redi tensor
> 309 |GM_Kwz | 15 |WM P LR |m^2/s |K_33 element (W.point, Z.dir) of GM-Redi tensor
> 310 |GM_PsiX | 15 |UU 311LR |m^2/s |GM Bolus transport stream-function : X component
> 311 |GM_PsiY | 15 |VV 310LR |m^2/s |GM Bolus transport stream-function : Y component
> ------------------------------------------------------------------------
> Num |<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
> -----------------------------------------------------------------------
Chris
William Dewar wrote:
> dear dr hill
> is there any way to get a hold of the pressure field computed by the
> mitgcm? can it be dumped as part of the output?
More information about the MITgcm-support
mailing list