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We investigate the transport of mass and momentum between layers in idealized
exchange flow through a contracting channel. Lock-exchange initial value problems
are run to approximately steady state using a three-dimensional, non-hydrostatic
numerical model. The numerical model resolves the large-scale exchange flow and
shear instabilities that form at the interface, parameterizing the effects of subgrid-
scale turbulence. The closure scheme is based on an assumed steady, local balance of
turbulent production and dissipation in a density-stratified fluid.

The simulated flows are analysed using a two-layer decomposition and compared
with predictions from two-layer hydraulic theory. Inter-layer transport leads to a sys-
tematic deviation of the simulated maximal exchange flows from predictions. Relative
to predictions, the observed flows exhibit lower Froude numbers, larger transports
and wider regions of subcritical flow in the contraction. To describe entrainment
and mixing between layers, the computed solutions are decomposed into a three-layer
structure, with two bounding layers separated by an interfacial layer of finite thickness
and variable properties. Both bounding layers lose fluid to the interfacial layer which
carries a significant fraction of the horizontal transport. Entrainment is greatest from
the faster moving layer, occurring preferentially downstream of the contraction.

Bottom friction exerts a drag on the lower layer, fundamentally altering the overall
dynamics of the exchange. An example where bed friction leads to a submaximal
exchange is discussed. The external forcing required to sustain a net transport is
significantly less than predicted in the absence of bottom stresses.

1. Introduction
Flow between two basins of different fluid densities is a long-standing problem of

fundamental interest in geophysical fluid dynamics. Such flows occur frequently in
nature, for example in straits, in channels between deep ocean basins, or between
lagoons and coastal seas. Typically, these flows are driven by internal pressure gradi-
ents resulting from the density contrast between the basins and are strongly influenced
by topographical features of connecting channels. Depending on the sign and the mag-
nitude of the barotropic pressure difference between the basins, such flows can be
either uni- or bi-directional. In the case of bi-directional or exchange flow, the net
(vertically averaged) flow can be in either direction.

Scientific interest in the dynamics of exchange flows dates from at least as early as
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1681 when Marsigli performed his experiments to explain the counter-flow through
the Bosphorus. In the Bosphorus, salinity differences between the Mediterranean
Sea to the south, and the Black Sea to the north, drive an under-current northward
through the strait, while a difference in sea level drives a south-flowing surface current.
Generally, the net transport is from north to south. The strait itself has a distinct
contraction which appears to be a site of persistent and energetic mixing of the
opposing flows (Oğuz et al. 1990).

Theoretical understanding of exchange flows is based largely on equations describ-
ing the dynamics of steady, inviscid two-layer flows through idealized channels with
slowly varying cross-sectional area. Analytical treatments for two-layer flow through
a contracting channel are given by Armi & Farmer (1986) and Lawrence (1990).
Two-layer hydraulic theory predicts the height of the interface separating the layers
and the streamwise dependence of the layer speeds, given the channel geometry, the
densities of the layers and the net transport (or the flow rate ratio).

Arguably the most important concept emerging from these analyses is that of
maximal exchange. When two hydraulic controls are present, the volumetric exchange
between two basins is determined by processes occurring within the region defined
by the controls, this region being isolated from the basins by two distinct zones of
supercritical flow. This exchange is maximal in the sense that no greater exchange can
occur (Armi & Farmer 1987), i.e. no solutions of the idealized hydraulic equations
with greater exchange exist.

Though two-layer hydraulic theory has proven extremely useful, direct application
of the theory to geophysical flows of interest is often problematic. In particular, the
theory excludes entrainment and mixing between layers and thus cannot be used to
address the streamwise variability of the active and passive tracers in the opposing
flows. The flow through the Strait of Gibraltar provides a good example. Bray,
Ochoa & Kinder (1995) observed a thick interfacial layer with variable properties in
Gibraltar, concluding that this layer was the result of vertical exchange and mixing
between the upper and lower layer flows. Furthermore, the interfacial layer was
observed to carry a significant fraction of the horizontal transport in both directions.
Though the hydraulic theory can be extended to three or more layers of uniform
properties (see e.g. Baines 1995) the resulting framework does not allow for the
transport of properties between layers.

In this paper we take a numerical approach and examine simulations of exchange
flow through idealized contracting channels. In taking this approach, several of
the simplifying assumptions of two-layer hydraulic theory are relaxed. Numerical
solutions are obtained for non-hydrostatic flow of a continuously stratified fluid in
three dimensions. The numerical results are first examined within the framework of
the two-layer theory; however our particular focus is on the effects and consequences
of mixing and dissipation. The numerical study is by no means exhaustive; only a
few representative simulations covering a limited portion of the relevent parameter
space are discussed.

We show that an interfacial layer of intermediate density plays an important role
in the horizontal exchange. This layer is formed by vertical entrainment and mixing
in the vicinity of the controls, and carries mixed fluid away from the contraction in
both directions. The transport in the interfacial layer is significant; it can equal or
exceed the transport of unmixed fluid. These findings are similar to those of Bray et
al. (1995) for Gibraltar. We also give an example where the effect of bottom stress
is to inhibit the development of supercritical flow in the lower layer, resulting in a
submaximal exchange flow.
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We begin by slightly re-casting the ‘canonical’ problem of two-layer exchange flow
to facilitate a numerical approach (§ 2) followed by a brief description of the numerical
methods used to simulate the flow (§ 3). In § 4, simulations of maximal exchange flow
through a free-slip channel are analysed. The results are interpreted from both a two-
and three-layer perspective and the exchange between layers is quantified. In § 5, we
discuss a simulation of submaximal exchange in which bottom friction acts to slow
the lower layer flow. These results are also interpreted from two- and three-layer
perspectives. A discussion of the results is given in § 6.

2. Exchange flows: IVP formulation
Steady two-layer hydraulic theory for flow through a contraction is based on

continuity and the dimensionless Bernoulli equations for the upper (subscript 1) and
lower (subscript 2) layers,

Q = b(u1h1 + u2h2), (1)

H1 = 1
2
u2

1(x) +
g

g′
+ Ps(x), (2)

H2 = 1
2
u2

2(x) +
ρ1

∆ρ
h1 +

g

g′
h2 + Ps(x) (3)

focusing on the energy difference ∆H = H2 −H1 to emphasize the internal dynamics.
Here Q is the net transport, b(x) is the channel width, ∆ρ = ρ2 − ρ1, g

′ = g∆ρ/ρ2

is the reduced gravity, and Ps is the surface pressure assuming a stress-free rigid lid.
Layer thicknesses hi and velocities ui are scaled by the (uniform) channel depth D
and the nominal wave speed

√
g′D respectively.

Hydraulic control occurs at locations where the composite Froude number G2 is
equal to one (Armi & Farmer (1986)), where

G2 = F2
1 + F2

2 , F2
i =

u2
i

hi
. (4)

Two-layer flow is subcritical when G2 < 1 and supercritical for G2 > 1. Maximal
exchange flow through contracting channels is characterized by the existence of two
control points: a throat control at the narrowest section and a virtual control located
upstream (with respect to the net transport) of the throat. For exchange flow with no
directional bias, these two control points coalesce at the throat.

To predict maximal exchange solutions using two-layer hydraulic theory, the chan-
nel width b(x), the depth D, the density difference ∆ρ and either the net transport Q
or the ratio of the layer transports qr , where

qr =
q1

|q2| (5)

are specified. Determination of the conditions at the throat and virtual controls is
sufficient to determine steady solutions for the volumetric transport, the thickness and
the velocity of the layers (Armi & Farmer 1986; Lawrence 1990). For submaximal
exchange, the virtual control is not present and flow conditions at another point, e.g.
at the subcritical channel exit, must be used instead to close the problem. Note that
in either case, either the net transport or the transport ratio must be specified to
determine the solution.

Figure 1 shows the plan view of the contracting channel used for the numerical
simulations as well as the two-layer hydraulic prediction of G2 for the density
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Figure 1. (a) Plan view of the contracting channel used in the numerical simulations. Basins to the
left (right) of the channel are sources of fluid with density ρ1 (ρ2). (b) Composite (G2) and stability

(F∆)2 Froude numbers.

difference used in the simulations. In this example, the transport ratio qr is less than
one and the net transport is from right to left. Dark shading marks the region of
predicted subcritical flow where G2 < 1. To either side of this region, the flow is
supercritical. Though not explicitly predicted by the theory, it is understood that
supercritical conditions will not be maintained and that the flow will return to a
subcritical state via dissipative hydraulic jumps. Also shown in the figure is the
stability Froude number F∆ = (u2 − u1)/

√
g′D, a measure of the long-wave stability

(Lawrence 1990). Note that most of the flow downstream of the contraction (light
shading) is predicted to be unstable to long waves. Since two-layer hydraulic theory
is based on the propagation of information via long internal waves, the theory is
self-inconsistent in this region.

Suppose we wish to view these steady hydraulic predictions as far-field (in time)
solutions of lock-exchange, initial-value problems in a variable-width channel. At
t = 0, we know, and can thus specify, the channel geometry and the densities of the
two fluids in the adjoining reservoirs. We do not know however, and thus cannot
specify, the flow rate ratio or the net (vertically averaged) flow. This is part of
the solution of a well-posed initial-boundary value problem. Intuitively, the pressure
difference across the contraction would appear sufficient to complete the problem
specification. Note that specifying Q or qr allows the hydraulics solution to be
obtained (Armi & Farmer 1986; Lawrence 1990). In particular, the solution yields
the upper-layer velocity u1(x) which, via (2), determines the surface pressure Ps(x) up
to a constant. In this way, a unique relationship between the pressure drop across the
contraction ∆P and either Q or qr can be computed for a given channel geometry
and density difference.

The ∆P vs. qr relationship allows the problem statement for steady exchange flow
through a variable-width channel to be re-cast slightly. The external parameters are
the channel geometry (b(x) and H), the density difference between the reservoirs ∆ρ
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and the pressure drop across the contraction ∆P . This formulation is convenient
for numerical simulation and also facilitates comparison of results with two-layer
hydraulic predictions. Assuming infinite reservoirs, this approach also allows the
problem to be formulated within a section of the channel encompassing the control
points but not necessarily including the reservoirs themselves. This has the advantage
of focusing computational effort in the vicinity of the hydraulic controls and their
associated jumps. Reservoir conditions enter the problem formulation only indirectly
via the specification of the inflow densities (or tracer concentrations). The layer thick-
nesses, i.e. the locations of in- and outflow at the up- and downstream computational
boundaries, are not specified a priori but change in time and are determined as part
of the solution.

The computational approach taken here is to begin with ‘lock-exchange’ initial
conditions in a finite length channel. Steady solutions to the full equations of motion
are then computed and compared to the corresponding theoretical predictions. For
the simulations discussed, the primary external variable to be varied is the barotropic
pressure drop across the contraction, with the channel geometry and the density
difference held fixed.

3. Numerical model
The equations of motion for an incompressible, density stratified fluid under the

Boussinesq approximation are

∂

∂t
u+ u · ∇u = − 1

ρ0

∇p− ẑ g
ρ0

ρ′ + ∇ ·Km∇u, (6)

∂

∂t
ρ′ + u · ∇ρ′ + w

d

dz
ρ̄ = ∇ ·KT∇ρ′, (7)

∇ · u = 0. (8)

Here u is the velocity vector with components [u, v, w] in the cartesian coordinate
directions x, y and z, ρ′ is the density perturbation from an arbitrarily specified, time
independent profile ρ̄(z), ρ0 is a constant reference density, g is the gravitational
acceleration and ẑ is the unit vector in the vertical direction (positive upward). The
coefficients Km and KT are the eddy viscosity and eddy diffusivity respectively, with
values that vary in space and time depending on local estimates of the production
rate of turbulent kinetic energy.

Equations (6)–(8) are solved numerically over an orthogonal-curvilinear grid con-
forming to the variable width channel sidewalls. All simulations discussed in this
paper were conducted for the 120 m long by 10 m deep channel shown in figure 1.
The resolution of the numerical mesh was 129×17×65 grid points in the streamwise
x, spanwise y and vertical z directions respectively. Though the horizontal spacings
are variable in curvilinear coordinates, this corresponds to nominal grid spacings of
93, 60 and 15 cm.

The numerical algorithm incorporates a fourth-order compact scheme for spatial
differentiation, third-order Adams–Bashforth time stepping and a multi-grid projec-
tion method for pressure. A discussion of the numerical methods, as well as a suite of
validation studies against analytical solutions and a laboratory experiment, are given
in Winters, Seim & Finnigan (2000). Two aspects of the numerical methods, however,
are specific to these exchange flow simulations and warrant further discussion. The
subgrid-scale closure scheme, by which the values of the eddy viscosity and diffusivity
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Figure 2. Snapshots of the velocity vectors, overlain with contours of the density field, for various
times during the evolution of the initial value problem to steady state. For this case qr = 0.55.
Simulation data are taken from the mid-channel, vertical (x, z)-plane.

are prescribed and the treatment of the open boundary conditions are presented in
the Appendix.

The simulations are conducted in a variable-width channel with vertical, free-slip
sidewalls. The free surface is treated as a stress-free rigid lid, consistent with the
Boussinesq approximation (see Lawrence 1990). The maximal exchange simulations
in § 4 were computed with a free-slip bottom boundary. For the submaximal flow in § 5,
the effects of bottom stress were included and a no-slip bottom boundary condition
was imposed. At all solid walls, adiabatic zero-flux conditions are prescribed for
density. At the up- and downstream computational boundaries, the inflow densities
are prescribed to match the assumed reservoir values. Viscous sponge layers are
employed within 20 m of these open boundaries to minimize spurious reflections from
imperfect treatment of the open boundaries.

4. Maximal exchange flow
4.1. Overview

The simulations are initialized as lock-exchange problems: fluids of slightly different
density (∆ρ = 0.5 kg m−3) fill the two ends of the channel, separated by a gradual tran-
sition region centred at the channel narrows. A barotropic pressure drop, with higher
pressure at the left end of the channel, is prescribed via the boundary conditions and
maintained as the flow develops. Figure 2 shows the formation of bore-like features
near the top and bottom of the channel which propagate away from the contraction
and out of the channel. The isopycnal positions in the vicinity of the contraction
are established quickly, indicating relatively rapid establishment of hydraulic control,
which is maintained as the flow continues to accelerate. Non-hydrostatic features, as-
sociated with the bore fronts and their instabilities, propagate out of the test section,
into the sponge regions and out of the computational domain, leaving behind an
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Figure 3. Components of (a) the kinetic energy balance and (b) potential energy balance for the
simulation shown in figure 2.

approximately steady exchange flow with no indication of significant reflection from
the artificial boundaries.

Energy balance equations for the computational domain V can be derived from the
equations of motion (6)–(8) (Winters et al. 1995). Kinetic (Ek) and potential energy
(Ep) obey the evolution equations

d

dt
Ek =

−1

ρ0V

∮
S

[
pu+ u

(u2 + v2 + w2)

2

]
· n̂ dS − g

ρ0V

∫
V

ρw dV

+
1

ρ0V

∫
V

u · ∇ ·Km∇u dV , (9)

d

dt
Ep =

g

ρ0V

∫
V

ρw dV +
g

ρ0V

∮
S

zρu · n̂ dS +
g

ρ0V

∫
V

z∇ ·KT∇ρ dV , (10)

where

Ep =
g

ρ0V

∫
ρz dV , Ek =

1

ρ0V

∫
u2 + v2 + w2

2
dV (11)

and S is the surface bounding the computational domain V with outward facing unit
normal n̂.

The time-dependent energy balances in figure 3 demonstrate the approach of
the lock-exchange problem to a nearly steady exchange flow for which the various
energy transfer terms remain approximately constant. Early in the development, i.e.
over the first 3000 s, the bore-like signals propagate toward the boundaries and
out of the system. During this time, instabilities are observed near the bore fronts
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Figure 4. A comparison of the predicted and simulated interface heights as a function of streamwise
position for qr = 0.59, typical of all the maximal exchange simulations. A feature suggestive of a
weak hydrualic jump is apparent in the simulated velocity interface but not in the density interface.

and the resulting energy balances are strongly time dependent. After about 3000 s,
only occasional bursts of instabilities near the contraction exit (the left exit in this
example) are observed. These instabilities lead to wave-like fluctuations in the time
rate of change terms. On the whole, however, a steady balance is maintained.

The kinetic energy equation is well approximated by a three-term balance between
pressure work, buoyancy flux and loss of kinetic energy by advection out of the
domain. The potential energy equation reduces to an approximate balance between
potential energy advection and buoyancy flux. These balances describe a system in
which, on average, heavy fluid parcels are advected into the domain slowly and at
height to the right, which then gain kinetic and lose potential energy as they accelerate
and plunge through the contraction, before exiting the domain at higher velocity and
lower elevation to the left. The residual of the potential energy balance is always
small relative to the dominant forcing terms of the problem, typically less than 1% of
the kinetic energy advection or the pressure work terms. Because the energy balance
is assessed independently of the calculations used to advance the fields in time, the
magnitude of the potential energy balance residual is a good indicator of the overall
quality of the numerical solution.

4.2. Two-layer decomposition

To permit a comparison between the model results and inviscid theory we time-
and cross-channel average the simulated fields once an approximately steady state
(as indicated by the energy transfer terms) had been established. For the purpose
of forming layer Froude numbers, the zero isotach of the averaged flow is used to
decompose the flow into two layers. The lower-layer thickness h2 is taken as the
height of the zero-crossing of the averaged streamwise flow and the upper layer h1 is
equal to H − h2. Layer velocities ui are computed by averaging u within each layer.
Layer transports qi = uihib are then computed as a function of streamwise position
and the average value of q1/|q2| is taken to characterize the flow for comparison with
analytical predictions.

Alternatively, the mid-isopycnal ∆ρ/2 could be used to separate the flow. Note that
these two surfaces are not co-located in the domain (figure 4). We use the zero isotach
to define the layers because this definition seems more consistent with the spirit of
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Figure 5. Comparison of predicted (dashed line) and simulated (solid line) streamwise distributions
of the composite Froude number G2 for (a) qr = 0.59, (b) qr = 1.02 and (c) qr = 1.92. A blow-up of
the graphic near the throat of the contraction is shown as an insert.

the theory, i.e. two layers of fluid flowing in opposite directions. Though our choice
is somewhat arbitrary, we note that computation of Froude numbers based on layers
defined by the position of the mid-isopycnal leads to results that are inconsistent
with the observed character of the flow. For example, the lower-layer flow shown in
figure 6 is laminar and free of instabilities as it nears the left exit of the domain.
The lower layer Froude numbers, based on layers defined by the zero isotach and the
mid-isopycnal, are approximately 0.44 and 2.7 respectively. Characterizing the lower-
layer flow as highly supercritical does not seem reasonable. Similar inconsistencies
were observed in all the maximal exchange simulations when the mid-isopycnal was
used to define the two layers.

Figure 4 shows that the zero isotach is systematically offset from the predicted
interface position. This is characteristic of all the model solutions with free-slip
boundary conditions; the layers never get as thin as predicted by inviscid theory.
Instead, there are adjustments to the height of the velocity interface downstream
edges of the contraction (near 50 and 70 m), resulting in thicker than predicted active
layers outside of the contraction. The separation of the density and velocity interfaces
indicates that mixed fluid has been formed, and that it is moving away from the
contraction on either side.

Predicted and simulated composite Froude numbers G2 are shown in figure 5 for
three different values of the flow rate ratio qr . A number of features are common to all
cases. Most apparent is that the predicted and simulated solutions agree best within
the contraction region. Away from the contraction the simulated flows are subcritical
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Qr ∆P s ∆P p

q1s

q1p

q2s

q2p

Qs

Qp

∆q1

q10

0.59 −12.2 −10.9 1.13 1.13 1.13 −0.05(−0.08)∗
1.02 −16.0 −15.7 1.09 1.09 1.09 0.00
1.92 −18.6 −21.1 1.14 1.14 1.14 0.03
1.73# −9.4 −17.1 1.14 1.28 1.00 0.14

Table 1. Comparison of two-layer values from simulations (subscript s) and predictions (sub-
script p). (∗ indicates entrainment during a wave packet event; # indicates prediction is for
submaximal flow where the observed Q was used to specify the problem, hence the predicted qr
(1.94) is not matched). q10 is the transport carried by the upper layer as it enters the computational
domain. Pressures given in Pa.

whereas the theoretical predictions remain supercritical. Because the theory does not
explicitly predict the location or the energy loss of jumps, this results in the large ob-
served discrepancy in G2. Within the contraction, the model results are similar to the
predictions in that a subcritical region is observed, bounded to either side by zones of
supercritical flow. This is the defining characteristic of maximal exchange flow (Armi
& Farmer 1987). As predicted, maximum values of G2 occur downstream of the con-
traction. When qr ≈ 1, the maxima on either side of the contraction are approximately
equal. The exact positions of the controls (where G2 = 1) are not accurately predicted
by the theory; generally the subcritical region is significantly wider than predicted.
The virtual control, which occurs upstream of the throat in the biased flows, is fur-
ther upstream than predicted, while the throat control is shifted downstream. In these
maximal exchange simulations, the throat of the contraction is therefore not a control
point. In the case where qr = 1, the theory predicts the coalescence of the virtual and
the throat controls. In the simulations, however, the two controls remain separated.

Though mixing and dissipation at the interface does not qualitatively alter the
nature of the simulated maximal exchange flows, it does lead to quantitative differences
relative to inviscid predictions. The predicted and modelled pressure drop across the
channel is roughly the same for qr = 1, which we will denote as ∆Pqr=1.02. To drive
a net rightward (leftward) transport through the channel, a larger (smaller) pressure
drop is required. We find that the change in ∆P needed to shift the simulation from a
pure exchange flow to one with a net transport is significantly less than that predicted
from two-layer theory. In particular, the observed ∆Pqr=0.59 − ∆Pqr=1.02 = 3.8 whereas
the predicted change is 4.8. Similarly, ∆Pqr=1.92 − ∆Pqr=1.02 = 2.6 while the predicted
change is 5.4. This suggests that the change in external forcing needed to move the
flow away from a pure exchange flow is reduced by as much as 50% when the flow
is continuously stratified and subject to mixing and dissipation. At the same time the
volume transport in the layers is moderately increased, presumably due to the shift
in the control locations and the correspondingly greater active layer thickness.

The change in transport carried by the upper layer, ∆q1, reveals that fluid is
systematically lost or gained by the upper layer depending on the value of qr . When
qr ≈ 1, the layer transport changes little. When qr < 1 less fluid leaves the domain in
layer 1 than enters it, i.e. layer 2 preferentially entrains fluid from layer 1. The reverse
is true when qr > 1; layer 1 entrains fluid from layer 2. When the flow is steady and
free of shear instabilities roughly 5% of the flow is entrained when qr 6= 1. When the
interface is unstable (e.g. near t = 5000 in figures 2 and 3) the entrainment rate can
double (table 1).
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Figure 6. (a) Profiles of U (——–) and ρ (− − −) from the three streamwise positions marked
with dashed white lines on the contour plot (b). Horizontal lines mark the positions of the upper
and lower bounds of the interfacial layer. (b) Contours of U (in m s−1) overlain with the upper and
lower boundaries of the interfacial layer for qr = 1.92.

4.3. Three-layer decomposition

A more careful examination of the continuous fields suggests a qualitative change
in character of the flow as a result of entrainment and mixing between layers. The
velocity and density profiles shown in figure 6(a) suggest the flow might be more
appropriately described by three layers, with two bounding layers of approximately
uniform properties being separated by a finite-thickness interface. Marked on the
panels are the upper and lower limits of the interface layer, defined as a 0.05 kg m−3

difference from the inflow densities. Overlaying these interfaces on contours of the
along-channel velocity field (figure 6b) shows that the interface layer is thinnest in the
contraction and thicker to either side. It is also apparent that the zero isotach is not
centred in the interfacial layer; rather, the interface is moving with the lower layer to
the left of the contraction and with the upper layer to the right.

The relative importance of each of the three layers in carrying the transport, and
the rate of entrainment into the interface from the bounding layers, is summarized in
figure 7 for three values of qr . The size of the circles shows the relative speed of the
layer at various streamwise positions, filled circles denoting flow to the right, open
circles flow to the left. Shading in the bounding layer indicates the rate of detrainment
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represent the magnitude of the streamwise transport in each layer, larger symbols indicating greater
transport, with filled symbols denoting flow to the right, open symbols denoting flow to the left.
Shading in the bounding layers indicates the detrainment speed (i.e. loss of fluid from the layer),
and shading in the interfacial layer indicates the rate of entrainment from both bounding layers.

(i.e. rate of loss of transport) from the layers, and shading in the interfacial layer
indicates the total entrainment from both bounding layers. Loss of transport from the
bounding layers is a signature of diapycnal mixing. When qr = 1, the bounding layers
carry the same transport and both are entrained into the interfacial layer at about
the same rate. The upper-layer transport decreases from left to right, with maximum
rates of detrainment occurring to the right (i.e. downstream) of the contraction. The
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Figure 8. Contours of Km = KT (in m s−1) for qr = 1.92, overlain with isopycnals between 0.1
and 0.4 kg m−3. Note the symmetry of the distribution of Km about the contraction, and the close
correspondence in the positions of maximum Km and the pycnocline.

lower-layer transport is the mirror image of that in the upper layer. The interfacial
layer carries essentially no net transport at the centre of the contraction and roughly
as much transport as the bounding layers near the channel exits. To either side of the
contraction, local entrainment of fluid into the interfacial layer is preferentially from
the faster of the two bounding layers. This is a consequence of the vertical asymmetry
of the shear with respect to the location of the interfacial layer in the vicinity of the
control points.

When qr 6= 1, the flows are similar but the layer properties are no longer laterally
symmetric across the throat of the contraction. The interfacial layer carries roughly
the same transport as when qr ≈ 1, but because of the reduced transport in the slower
moving bounding layer, the interfacial layer carries the majority of the transport in
the upstream (with respect to the vertically averaged flow) direction. Entrainment
remains concentrated in the region of the contraction and again occurs preferentially
from the (locally) faster of the two layers.

Mixing rates are greatest where the density gradient and eddy diffusivity are large.
The density conservation equation

∂ρ

∂t
+ u · ∇ρ = ∇ ·KT∇ρ (12)

indicates that when the flow is steady, streamlines will cross isopycnals (i.e. there will
be diapycnal transport) where the diffusivity KT and density gradients are locally
enhanced. Figure 8 shows elevated diffusivities within the interface layer, with peak
values occurring to either side of the contraction. From figure 6(b) it can be seen that
the sites of these maxima are also where the isotachs cross the isopycnals, i.e. where
u · ∇ρ is non-zero. From the two-layer analysis, we see that (figure 5) these are also
locations where the flow is supercritical or making a transition back to a subcritical
state. These results are consistent with the notion that mixing is strongest where the
flow speeds are highest or there are jumps.

The three-layer analysis emphasizes that the inclusion of viscosity and diffusion
into the problem leads to a fundamental change in the character of the solution.
Strong mixing in the exit regions of the contraction produces a significant amount
of mixed fluid. The flow in the interface is typically away from the contraction. The
composition of the interfacial layer is related to the relative speeds of the bounding
layers, the faster moving layer being entrained more rapidly into the interfacial layer.
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Figure 9. Contours of (a) Km∂U/∂z, (b) u and (c) ρ for qr = 1.73 with a no-slip bottom boundary
condition. The inclusion of bottom friction shifts the solution to a submaximal exchange flow, in
which only the upper layer is active. Mixing and stress are strong downstream of the contaction
and at the bottom.

5. Submaximal exchange flow
5.1. Overview

We next consider the effect of bottom friction on the steady solution by changing the
bottom boundary condition from free- to no-slip. Early in the temporal development
there are obvious differences in the character of the flow. Instabilities associated
with the propagating bores are more frequent and more intense than for the runs
in § 4. In steady state the flow strongly resembles the submaximal exchange flows
of Armi & Farmer (1986). For the case shown, with qr > 1, the interface is nearly
flat and at mid-depth to the left of the contraction, and displaced upward to the
right (figure 9c). Where the upper layer is thinnest, the interface is extremely active
with near continual formation of billows that grow as they are advected downstream.
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Figure 10. (a) Channel geometry, (b) interface heights and (c) composite Froude number distribu-
tions for qr = 1.73 with a no-slip bottom boundary condition. The predicted curves in (b) and (c)
are for a submaximal exchange flow.

Velocities in the lower layer are approximately uniform along the channel, whereas
velocities in the upper layer peak downstream of the contraction. The shear stress,
estimated as Km(∂U/∂z) and shown in figure 9(a), reveals the presence of enhanced
stress in the bottom boundary layer, though the bed stress is less than the peak
interfacial stress associated with the billows downstream of the contraction.

5.2. Two-layer decomposition

Because of the obvious change in flow regime, we compare this simulation with
hydraulic predictions for submaximal exchange flow. A submaximal flow is charac-
terized by a single control point (at the throat), and we therefore require additional
information to solve the system of equations describing the inviscid solution. Armi
& Farmer (1986) suggest specifying the net transport and the reservoir condition (i.e.
the height of the interface in the reservoir where velocities have fallen to zero). This
is impractical for our situation where we have modelled a limited domain. Rather, we
determine the internal energy of the system (∆H = (u2

1 − u2
2)− y1) at the exit region.

This, together with the net transport, permits a prediction of the submaximal flow.
The predicted interface (figure 10) is flat to the left of the contraction, rising such

that G2 = 1 in the throat. The upper layer thins and supercritical flow is predicted
to the right of the contraction. This is a reasonable qualitative representation of the
simulated flow. The prediction corresponds well with the simulated interface height
and G2 to the left of the contraction, but in contrast with the predictions, critical
conditions occur only briefly and well downstream of the throat. Unlike the flows with
a free-slip bottom, the velocity and density interfaces overlay each other throughout
the domain, both exhibiting obvious transitions near x = 70 m.

The idealized submaximal exchange prediction is matched to the model results
based on the net transport Q rather than the ratio qr . This is done because when qr
is used to match solutions, the predicted layer transports differ by as much as 50%,
whereas when net transport is matched, the layer transports differ by 15–30%, as in
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Figure 11. Graphic presentation of the flow rates and entrainment rates for the no-slip run where
qr = 1.73, as in figure 7.

the previous comparisons. This leads to a somewhat different predicted qr (1.94) than
the simulated qr = 1.73. The pressure drop needed to drive a net transport in the
simulation is only 40% of the predicted pressure drop. This is the smallest pressure
drop used in any of the reported calculations.

5.3. Three-layer decomposition

Viewing the simulation as a three-layer flow highlights the dramatic change in the
role of the interfacial layer in a submaximal exchange flow (figure 11). To the
left of the contraction the interfacial layer is of constant thickness and essentially
stagnant. Entrainment into the layer is minimal. To the right of the contraction,
the interfacial layer becomes quite thick, occupying ≈ 40% of the depth of the
fluid, and carries more of the transport than the upper-layer at the channel exit.
Maximum entrainment occurs downstream of the contraction, and upper-layer fluid
is preferentially entrained. The lower-layer transport is essentially uniform except for
moderate detrainment from the layer upstream of the throat. Bottom friction breaks
the symmetry in flow properties across the contraction.

The bias towards strong mixing only downstream of the contraction is also apparent
in the distribution of eddy viscosity (figure 12). Peak values of Km are only half the
magnitude seen in the free-slip simulations (cf figure 8). A broad region of the flow
around the interface exhibits elevated eddy viscosity, which together with the bottom
boundary layer, produces almost the same average eddy viscosity as the free-slip
simulations. The region of greatest Km gradually moves above the main pycnocline
downstream of the contraction, in contrast to the free-slip runs in which large Km was
strictly confined to the pycnocline. Eddy viscosity in the bottom boundary layer is
minimal upstream of the contraction, reaches a maximum in the throat, and remains
elevated downstream of the contraction, where the flow would be supercritical in a
maximal exchange flow.

The broad expanse of elevated Km downstream of the contraction is the result of
strongly time-dependent flow. Snapshots of the instantaneous velocity and density
fields at 250 s intervals (figure 13) illustrate the nature of the time-dependence. In
stark contrast to the maximal exchange flows, which were generally stable at resolved
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Figure 12. Contours of Km for the no-slip run where qr = 1.73, overlain with isopycnals between
0.1 and 0.4 kg m−3. Note the asymmetry of the distribution of Km about the contraction, in contrast
to the free-slip model runs.
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Figure 13. A series of snapshots of the velocity vectors overlain with density contours at 250 s
intervals to demonstrate the time-dependence of the flow when bottom friction is included.

scales, the submaximal flow is highly intermittent downstream of the contraction.
Shear instabilities are regularly shed from the region where the flow achieves G2 = 1
(near x = 70 m) that are advected out of the right-hand side of the domain. Averaging
these features over time produces a smooth but broad region of enhanced viscosity
to the right of the contraction. To the left of the contraction the pycnocline is
sharp, the flow is stable, and except for occasional small-amplitude waves, shows little
time-dependence.

The inclusion of bottom friction results in qualitative changes in the solution.
Though the stress associated with the bottom boundary is not a dominant feature,
and does not increase the average eddy viscosity in the domain, maximal exchange
solutions are no longer observed. The model solutions are a form of submaximal
exchange but require considerably weaker external forcing than predicted by inviscid
theory. Simulated layer transports exceed predictions by 15–30%, similar to the
discrepancy observed in comparing the free-slip simulations with maximal exchange
predictions. The interfacial layer plays an important role only on the downstream
side of the contraction, where it reaches a thickness close to half the fluid depth and
carries the majority of the downstream transport. Upstream of the contraction the
interfacial layer is thin and essentially stagnant. The other hallmark of the no-slip
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runs is that they are highly time-dependent, exhibiting a continuous shedding of shear
instabilities downstream of the hydraulic control.

6. Discussion
Our intent in this study is to examine how the inclusion of mixing and dissipation

modifies the solution of an exchange flow relative to the predictions of inviscid,
hydrostatic theory. This has been accomplished by posing an initial value problem
that can be solved numerically and has an exchange flow as its steady-state solution.
The numerical technique permits us to study the flow of a continuously stratified
fluid in an open channel in detail, subjecting the simulated flow to analyses that
would not be feasible in laboratory or field experiments. This approach, however,
is currently limited to idealized channels (Winters et al. 2000) and suffers from
lack of quantitative confidence in the parameterization of subgrid-scale turbulence.
Nevertheless, simulations such as those presented here allow the important dynamics
of inter-layer exchange to be explored systematically and provide a context in which
simplified models parameterizing these processes might be tested.

Though quantitative comparisons between idealized two-layer hydraulic theory and
the numerical simulations have been made, care should be used in interpreting and
generalizing the results. First, there is no absolutely justifiable scheme for decomposing
a continuously varying flow into two layers as the theory demands. Though we have
chosen to use a velocity-based decomposition, other choices might also be made.
Further, the theory is fundamentally based on the concept of conservation of transport
within layers, a condition which is violated to first order in the simulations. Given this,
it is not at all clear how to select the ‘equivalent’ idealized problem to compare with.
We have chosen the idealized problem with qr matching the simulations, though again,
other choices might also be reasonable. Finally, the simulations discussed represent
only a limited range of the relevant parameter space. The depth to width aspect ratio
and the abruptness of the contraction will clearly influence the flow but have been
held fixed in this study.

6.1. Comparison to two-layer theory

Analysing the modelled results as a two-layer flow, recognizing the uncertainties
inherent in such a decomposition, facilitates comparison with two-layer inviscid
theory. Comparison of the model results with the predictions on a Froude number
plane (e.g. Armi & Farmer 1986) demonstrates that the addition of interfacial friction
does not fundamentally change the maximal exchange solutions (figure 14a–c). Two
supercritical regions bound the central subcritical region, satisfying the defining
requirement of a maximal exchange flow (Armi & Farmer 1987). Quantitatively,
however, much more of the flow is subcritical than predicted. For example, when
qr ≈ 1 inviscid theory predicts that the two control points collapse to a single point
and that the flow is essentially supercritical everywhere. The simulations show no such
coalescence of the controls and that, in general, the Froude numbers are systematically
smaller than predicted. As predicted by Pratt (1986), friction acts to shift the site of
the throat control downstream, but it also shifts the virtual control upstream. The
regions of supercritical flow are largest on the downstream side of the contraction,
but the flow reverts to a subcritical state before leaving the domain in most cases.

The relatively low simulated Froude numbers are the combined result of thicker
than predicted active layers and slower than predicted layer velocities. As indicated
in table 1, these conditions lead to enhanced layer transports relative to hydraulic
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the Froude number plane the flow is subcritical. Dots along the curves mark approximately 6 m
intervals along the channel. Plots (a–c) are maximal exchange solutions and plot (d) is a submaximal
exchange solution.

predictions. Increased transport thus results not from accelerated flow speeds but from
a shift in the locations of hydraulic control together with an increase in layer thickness
at the new control points. This appears to be the dominant effect of interfacial friction
in the maximal exchange simulations.

The addition of bottom friction (figure 14d) qualitatively changes the solution,
moving the flow into a submaximal regime. The flow is subcritical everywhere except
the site of billow generation, and at which point the flow barely reaches G2 = 1.
From a practical point of view, it would be almost impossible to define such a flow as
hydraulically controlled with field observations because of the lack of any significant
region of supercritical flow. As in the cases with interfacial friction alone, the position
of the control is shifted, resulting in a larger layer thickness at the control and
correspondingly enhanced transport.

The issue of how this submaximal flow was forced is subtle. We do not specify
the interface positions at either end of the channel, only the density of the inflows
and the magnitude of the barotropic pressure drop. Lock exchange initial conditions,
in this case over a no-slip bottom boundary, evolve toward a steady submaximal
exchange. This state does not arise from flooding of a virtual control through
externally imposed end conditions. Rather, supercritical flow is inhibited on one
side of the contraction because bed friction limits the lower-layer velocity. This
additional mechanism retarding the flow fundamentally alters the force balance in
the lower layer in such a way that a large change in layer thickness is no longer
required. Consequently, the change in upper-layer thickness through the contraction
is correspondingly reduced.

With a no-slip bottom boundary, an exchange flow with qr near 2 requires a
significantly smaller pressure drop across the channel than for the case with interfacial
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Figure 15. Schematic representation of the horizontal and vertical transports in a three-layer system
for (a) qr = 0.59, (b) qr = 1.02, (c) qr = 1.92 and (d) qr = 1.73. Arrows show the magnitude and
direction of the transports. Magnitudes have been normalized by the maximum transport in each
panel.

friction alone. When the no-slip case was run with the same pressure drop as the
free-slip case, the combination of the barotropic pressure gradient and bed friction
nearly arrested the flow in the lower layer. The upper-layer transport thus greatly
exceeded that in the lower layer and the resulting qr was slightly greater than 15.
When a much reduced pressure drop is imposed, bed friction balances the acceleration
of the lower layer by the baroclinic pressure gradient, and interfacial friction is the
principal force balancing the barotropic forcing of the upper layer. Apparently, the
pressure gradients needed to sustain an exchange flow in the presence of friction are
considerably less than in its abscence.

6.2. Three-layer analysis

Although two-layer inviscid theory gives reasonable predictions of the layer trans-
ports, even when frictional effects are included (and assuming one knows when
to use a submaximal exchange solution), it provides no guidance on rates of en-
trainment and mixing between the layers. Bray et al. (1995) in their analysis of
observations from the Strait of Gibraltar emphasize the importance of the inter-
face in carrying horizontal transport, noting that its existence implies strong ver-
tical exchange between layers. We have adopted their description of the flow as
a simple means of quantifying the role of the interfacial layer in the simulation
results.
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Figure 16. Histogram of density (bars) and density flux (solid line) within the interfacial layer
between 20 and 40 m showing the preferential transport of dense water in this case (maximal
exchange, qr = 0.59). Note than the average density (∗) is considerably less than the flux-weighted
average (◦).

The three-layer analysis presented earlier can be represented schematically as
transports in and between layers at the ends and middle of the channel (figure 15). In
each plot the transport values have been normalized by the maximum layer transport.
A number of features are common to all cases and are discussed below.

Entrainment into the interfacial layer is preferentially from the faster of the bound-
ing layers. In the vicinity of the hydraulic controls, this is the thinner of the two
layers. The rates of entrainment are large, being as high as 30% of the transport
of the faster layer, and as much as 20% of the slower moving layer. In the case of
submaximal exchange the values are even more extreme, with as much as half of the
transport carried by the upper layer being entrained into the interfacial layer. This
analysis gives a rather different picture of entrainment than the two-layer view (see
∆q1 in table 1) in which the faster moving layer entrains fluid from the slower moving
layer at a slower rate.

A subtle point is that the average density of the interface is not necessarily the
flux-weighted average of the inflow densities. If the interface were a well-mixed layer,
its density would reflect the preferential entrainment of fluid from the faster moving
bounding layer, e.g. the average interface density would exceed 0.25 kg m−3 to the left
of the contraction. However, the interface is not well mixed, and the various density
classes in it are advected at different rates (figure 16). In the simulations, the average
interface density is always near ∆ρ/2 whereas the flux-weighted average is often 20%
smaller (to the right of the contraction) or larger (to the left of the contraction). Care
should be exercised when interpreting density measurements alone.

The net transport in the interfacial layer is always away from the throat of
the contraction. Although the flow within the layer may be bidirectional in places,
the mean transport is in the same direction as the thinner, faster moving layer. The
fraction of the transport carried by the interface is typically large, being equal to
or greater than the transport carried by the bounding layer that is moving in the
same direction. This indicates that more than half of the fluid moving away from the
contraction has undergone mixing with the opposing stream or, to a lesser extent, is
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recirculating fluid from the slower moving layer. Note the similarity between figure 15
here and figure 21 in Bray et al. (1995). The submaximal exchange case is different.
Here there is very little transport to the left of the contraction. The absence of a
virtual control results in a stable flow upstream of the contraction with relatively low
eddy diffusivity (figure 12). Little fluid is entrained from the bounding layers.

The existence of a net (cross-sectional averaged) flow, i.e. qr 6= 1, leads to maximum
entrainment on the downstream side of the contraction (to the left when qr < 1 and
to the right when qr > 1). The fraction of fluid lost from the bounding layer carrying
the most transport is less, however, than for the qr ≈ 1 case. The interface carries less
than half the transport downstream of the contraction, but as much as 2/3 of the
transport on the upstream side for the maximal exchange cases.

The interlayer transports can be interpreted in terms of mixing and recirculation.
For example, consider a passive tracer C entering the lower layer in figure 15(a).
Before passing through the contraction 15% of the flux of C would be lost to
the interfacial layer and recirculate out the right-hand end of the channel. Of the
85% passing through the contraction, about 30% would be diluted by mixing with
overlying fluid, and the remaining 55% would leave the left-hand end of the domain
unaltered. In our simulations, these numbers are fairly typical, in that roughly half the
fluid in a bounding layer that at some point is supercritical is lost to the interfacial
layer.

Though the simulated volumetric transports are increased relative to two-layer
predictions, presumably owing to a shift in the locations and conditions of hydraulic
control, net horizontal tracer transports are reduced by 10–15% for the simulated
maximal exchange flows as a result of dilution through mixing. This finding is
consistent with the laboratory measurements of Helfrich (1995) who observed a
reduction in salt transport of approximately 15%, attributing it to the formation
of a stratified, sheared interfacial layer through mixing. These results suggest that
mixing in the vicinity of hydraulic controls is a process of considerable importance in
determining the overall circulation and exchange between basins connected by straits
or channels.

Though much of the theoretical work focuses on maximal exchange, submaximal
exchange flows may be equally relevent. The submaximal case simulated appears
to be a reasonable qualitative representation of the observed flow near the central
contraction in the Bosphorus Strait (see e.g. Oğuz et al. 1990). To the north of the
contraction, where the interface is approximately at mid-depth, the observed flow is
stable and subcritical. To the south of the contraction the interface is much shallower,
the upper layer flow is accelerated and turbulence is greatly enhanced. These are the
essential features of the flow shown in the figure 13. The simulations suggest that
submaximal flow can result from local conditions, in this example through bottom
stress, and may not require the existence of hydraulic controls far up- or down-
stream. We do not mean to suggest that bottom friction necessarily induces a shift to
submaximal exchange but do note that as the bottom boundary layer thickens to an
appreciable fraction of the lower layer thickness, this becomes more likely.
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the many discussions with Mike Gregg, D’Asaro, Frank Henyey, Greg Ivey and Tim
Finnigan. Computational resources were provided by the Multi-Discipline Group at
the University of Washington Applied Physics Laboratory and the Skidaway Institute
of Oceanography.
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Appendix A
A.1. Subgrid-scale closure

Unless the flow is to be resolved to the dissipative scales, i.e. to approximately
millimetre scales, turbulent transport of mass and momentum must be parameterized
in terms of the resolved-scale flow. The parameterization employed here, following
the Smagorinsky (1963) approach, is based on an assumed steady local balance for
turbulent kinetic energy

ε = S2 − g

ρ0

ρw (A 1)

where ε is the dissipation rate of turbulent kinetic energy and S2 = uiuj∂jUi is the rate
of shear production. Lower-case variables represent subgrid-scale quantities, upper
case the resolved-scale quantities and the overbar indicates spatial and/or temporal
averaging over the subgrid scales.

Assuming that the turbulent correlations can be written in flux-gradient form, i.e.
that

uiuj = −Km

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, (A 2)

ρw = −KT

∂Λ

∂z
, (A 3)

the dissipation rate ε can be written in terms of the resolved-scale quantities as
follows:

ε = Km

(
S ′2 −N ′2

)
, (A 4)

where

S ′2 =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)2

and N ′2 = −
(
KT

Km

)(
g

ρ0

)
∂Λ

∂z
.

Here Λ indicates the total resolved scale density.
Following Smagorinsky (1963), and based solely on a dimensional argument, we

write

Km = (Cs∆)4/3ε1/3 (A 5)

where ∆ is a length scale, taken in practice as the nominal grid spacing (dx dy dz)1/3,
and Cs is the dimensionless Smagorinsky constant. Solving for ε and substituting into
(A 4) yields an expression for the eddy viscosity Km in terms of local values of the
resolved-scale flow

Km = (Cs∆)2
√
S ′2 −N ′2. (A 6)

Provided that S ′2 − N ′2 > 0, this expression is used for both Km and KT in the
governing equations. If S ′2 − N ′2 < 0, which occurs in regions of weak shears with
strong stable stratification, Km is held fixed at 10−6 m2 s−1. For the simulations reported
here, the Smagorinsky constant Cs was taken to be 0.17. This choice is in accord
with previously used values. For example Siegel & Domaradzki (1994) obtained good
agreement with predicted energy spectra for decaying stratified turbulence using a
value of 0.15. Kaltenbach, Gerz & Schumann (1994) used Cs = 0.17, in studies of
spatially homogeneous turbulence in a stably-stratified shear flow, though in their
study, buoyancy and the contribution of the mean shear to S ′ were neglected. A
value of 0.5 was used by Skyllingstad & Denbo (1994) in simulations of internal
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wave–mean shear interactions in the equatorial undercurrent. In each of the studies
cited, the turbulent Pr was taken as unity, i.e. KT = Km.

Though in principle a numerical study permits quantitative consideration of mixing
and dissipation in exchange flows, the simulation results should perhaps be interpreted
only qualitatively unless or until approximation errors associated with the closure
scheme can be established. Though different choices of closure could be made, and
perhaps to some extent justified, there is currently no demonstrably valid scheme
applicable across the range of dynamical conditions generated in these simulations.
We have thus opted for the relative simplicity of the fixed-coefficient Smagorinsky
scheme. Further development or assessment of alternative closure schemes is beyond
the scope of this initial work.

A.2. Boundary conditions

Before discussing the boundary conditions, it is necessary to sketch the numerical
treatment of the pressure. To do so, we rewrite equations (6)–(7) as

∂

∂t
u =Fu − 1

ρ0

∇̃p, (A 7)

∂

∂t
ρ′ =Fρ. (A 8)

whereFu andFρ are defined by the correspondence between (6)–(7) and (A 7)–(A 8).
Time integration is carried out in two stages. Assuming the velocity and density

fields are known at time t, and the solutions are desired at time t+∆t, an intermediate
velocity vector u∗, is defined where

u∗(x, y, z) = u(x, y, z, t) +

∫ t+∆t

t

Fu dt. (A 9)

Introducing the function P such that

u(x, y, z, t+ ∆t) = u∗ − ∆t

ρ0

∇̃P (A 10)

it follows that

∇P =
1

∆t

∫ t+∆t

t

∇p dt (A 11)

showing that the function P is related to the fluid pressure p through a time average
over the time interval ∆t.

At each time step, u∗ is approximated from (A 9) using an explicit integration
scheme to estimate the integral over a time step ∆t. An elliptic equation for P is
then obtained by taking the divergence of (A 10) and imposing the incompressibility
condition (8) on u(x, y, z, t+ ∆t):

∇2P =
ρ0

∆t
∇ · u∗. (A 12)

In practice, the equations are transformed to curvilinear coordinates prior to
numerical solution and the transformed version of (A 12) is a general, second-order
elliptic equation with mixed derivatives and spatially variable but time-independent
coefficients. The source term, however, depends on the computed u∗ and thus varies
in time.

Two types of boundary conditions are required in order to fully constrain P . At
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solid walls, i.e. at the bottom, at the rigid lid and at the sidewalls, the value of ∂P/∂n
is determined by resolving equation (A 10) into the directions normal the walls and
imposing no flow through the walls. This is conveniently implemented numerically on
the orthogonal, boundary-fitting grid because velocity components locally oriented
tangentially and perpendicularly to grid lines are used as primitive variables in the
algorithm. These Neumann conditions on P are used for both free-slip walls where
∂u/∂n = 0 and for no-slip walls where u = 0.

The up- and down-stream computational boundaries do not correspond with physi-
cal boundaries. Exact boundary conditions are thus unknown and must be modelled.
At these locations, the computed density field is cross-channel averaged and inte-
grated in depth to produce time-dependent hydrostatic density profiles at each end
of the domain. At each time step, P is then constrained to satisfy Dirichlet boundary
conditions determined by these profiles, augmented by the specified barotropic pres-
sure drop across the channel. When the flow is two-dimensional and truly hydrostatic,
these boundary conditions can be expected to work well with minimal reflection of
outgoing signals. When the outflow is characterized by non-hydrostatic wave motions,
as is frequently the case here, significant reflections are to be expected. To minimize
these reflections, sponge layers with significantly enhanced eddy viscosity are placed
adjacent to the computational boundaries. All results presented are taken from the
‘test section’ interior to the regions of artificially enhanced damping. In this scheme,
outgoing waves are damped as they approach the boundaries and, to the extent that
reflections occur, they are further damped as they return toward the ‘test section’.

By specifying P and employing one-sided discretizations near the up- and down-
stream boundaries, no additional conditions are required for the velocity. The density
of the inflowing fluid, however, must be specified. Adopting the convention that the
dense undercurrent flows from right to left, we specify that ρ = ρ1 at the left-hand
edge x = 0 when u > 0 and ρ = ρ2 at the right-hand edge x = Lx when u < 0 where
ρi are constant values with ρ2−ρ1 = ∆ρ > 0. We note that for these inflow conditions,
only fluid at the extreme values ρ1 and ρ2 is advected into the computational domain
from up- and down-stream; there is no external source of intermediate-density fluid.
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