[MITgcm-support] a problem with EXF

Ming Guo gming at karluk.physics.mun.ca
Thu Sep 15 13:55:14 EDT 2005


Hi, Matt,
I think I have tried that.
The attachments are the matlab file and the model output error file.
Can you help me to look at that?

thanks,
Ming

On Thu, 15 Sep 2005, Matthew Mazloff wrote:

> HI Ming,
>
> The latter method sounds right to me.  For a 2*2 grid field I believe the 
> file would look like:
>
> ustre(1,1,t1),ustre(1,2,t1),ustre(2,1,t1),ustre(2,2,t1),ustre(1,1,t2),ustre(1,2,t2),ustre(2,1,t2),ustre(2,2,t2),.....
>
> is this what you tried?
>
> -Matt
>
>
>
> Ming Guo wrote:
>
>> Hi,Matt,
>> 
>> I am still not sure what you mean ustre(x,y,t1),ustre(x,y,t2)....
>> For example, for a 2*2 grid field,
>> is the ustressfile like: ustre(1,1,t1),ustre(1,1,t2), ....,ustre(2,2,t1)
>> ustre(2,2,t2),....
>> or the ustre(x,y,t1),ustre(x,y,t2)... are just a series of stress matrixes 
>> and each denots one time step?
>> 
>> I tried the latter method, but the value it reads seems not right.
>> 
>> 
>> Thanks,
>> Ming
>> 
>> On Wed, 14 Sep 2005, Matthew Mazloff wrote:
>> 
>>> Hi Ming,
>>> 
>>> The model does need a ustress value at every grid point and at every 
>>> timepoint.  So the file must be like ustre(x,y,t1),ustre(x,y,t2)...  There 
>>> is an option to interpolate the exf files so you can give a coarse ustress 
>>> field and have the model interpolate to your grid at each timestep, this 
>>> would allow you to use vey small input files.  Currently this is only 
>>> setup to work on a lat, long grid. You can check out
>>> [MITgcm] / MITgcm_contrib / quarter_degree_global / input / data.exf
>>> maybe this link will work:
>>> http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/quarter_degree_global/input/data.exf?rev=HEAD&content-type=text/vnd.viewcvs-markup 
>>> to see a sample of the data.exf for the interpolation routine.
>>> 
>>> You'll also need to define USE_EXF_INTERPOLATION, in ECCO_CPPOPTIONS
>>> 
>>> Matt
>>> 
>>> 
>>> Ming Guo wrote:
>>> 
>>>> Hi, Matt,
>>>> 
>>>> As I am using uniform time-dependent wind stress, how to generate the 
>>>> stress file? just create ustressfile like, ustre(t1), ustre(t2)... and 
>>>> the model can give ustress value to all the grids,  or I also need to 
>>>> specify the value of every grids as gendata.m in exp0?
>>>> 
>>>> thanks
>>>> Ming
>>>> 
>>>> 
>>>> On Wed, 7 Sep 2005, Matthew Mazloff wrote:
>>>> 
>>>>> Hi Ming,
>>>>> 
>>>>> I am a bit surprised; I just looked at the EXF & MNC package and I don't 
>>>>> the model is able to read in NetCDF format input files.  Maybe someone 
>>>>> in the know can tell us what the status is of using NetCDF input. 
>>>>> Anyway, I know the model can read in binary input files and the 
>>>>> precision is given by exf_iprec = 32 (or 64).  I actually sent an email 
>>>>> under the thread name "Starting with MITgcm" that was about generating 
>>>>> input files a few weeks ago which I'll append below.  You should easily 
>>>>> be able to tell if the forcing fields are being read in correctly. 
>>>>> Check the monitor statistics for your forcing fields and see if they 
>>>>> seem reasonable.  Also, if the model crashes because it cannot find an 
>>>>> input file, it should give an error message that includes the name of 
>>>>> the file it last looked for. Remember that if you give the input file 
>>>>> name exf_input.data and the model can't find this file it may append a 
>>>>> ".data" on it and try again.  So if the error says it can't find 
>>>>> exf_input.data.data that's why. And just in case you were referring to 
>>>>> the previous issue of array precision, I'll add that exf_yftype refers 
>>>>> to the precision with which the exf package should read arrays.  Your 
>>>>> choices are RL for REAL*8 or RS for REAL*4. once again hoping I'm giving 
>>>>> accurate info,
>>>>> Matt
>>>>> 
>>>>> 
>>>>> Here's the old email:
>>>>> 
>>>>> Hi Matej,
>>>>> 
>>>>> As Ed said, the verification experiments have matlab scripts that 
>>>>> describe preperation of input files. For example, in MITgcm / 
>>>>> verification / exp5 / input / gendata.m
>>>>> a surface forcing file is made:
>>>>> 
>>>>> Q=Qo*(1+0.01*rand([nx,ny]));
>>>>> 
>>>>> it is size [nx,ny]
>>>>> if it were 3-d (e.g. and initial theta file) it would be size [nx,ny,nz]
>>>>> 
>>>>> then it is written with
>>>>> 
>>>>> fid=fopen('Qnet.circle','w','b');
>>>>> fwrite(fid,Q,'real*8');
>>>>> fclose(fid);
>>>>> 
>>>>> The data is written by fwrite down the matrix columns.
>>>>> 
>>>>> it is written translated into real*8 because the mitgcm data file given 
>>>>> in the verification experiment has
>>>>> readBinaryPrec=64,
>>>>> 
>>>>> it is read in as a surface heating file by putting
>>>>> # Input datasets
>>>>> &PARM05
>>>>> surfQfile='Qnet.circle',
>>>>> &
>>>>> in the data file
>>>>> other possible initial files you can give the model are (as seen in 
>>>>> MITgcm / model / src / ini_parms.F )
>>>>> C--   Input files
>>>>>    NAMELIST /PARM05/
>>>>>   & bathyFile, topoFile,
>>>>>   & hydrogThetaFile, hydrogSaltFile,
>>>>>   & zonalWindFile, meridWindFile,
>>>>>   & thetaClimFile, saltClimFile,
>>>>>   & surfQfile, surfQnetFile, surfQswFile, EmPmRfile, saltFluxFile,
>>>>>   & lambdaThetaFile, lambdaSaltFile,
>>>>>   & uVelInitFile, vVelInitFile, pSurfInitFile,
>>>>>   & dQdTFile, ploadFile,tCylIn,tCylOut,
>>>>>   & eddyTauxFile, eddyTauyFile,
>>>>>   & mdsioLocalDir,
>>>>>   & the_run_name
>>>>> CEOP
>>>>> 
>>>>> 
>>>>> 
>>>>> -matt
>>>>> 
>>>>> 
>>>>> 
>>>>> Ming Guo wrote:
>>>>> 
>>>>>> Hi, Matt,
>>>>>> 
>>>>>> just wonder the format of the focing files, such as ustress and 
>>>>>> vstress, should be NetCDF file, or something else?
>>>>>> 
>>>>>> thanks,
>>>>>> Ming
>>>>>> 
>>>>>> 
>>>>>> On Mon, 5 Sep 2005, Matthew Mazloff wrote:
>>>>>> 
>>>>>>> Hi Ming,
>>>>>>> 
>>>>>>> The problem is
>>>>>>> 
>>>>>>> yftype_exf='RL',
>>>>>>> 
>>>>>>> in data.exf
>>>>>>> 
>>>>>>> I looked in MITgcm/pkg /exf/exf_readparms.F
>>>>>>> and found
>>>>>>> exf_yftype but not yftype_exf.
>>>>>>> 
>>>>>>> You should switch this.
>>>>>>> 
>>>>>>> -Matt
>>>>>>> 
>>>>>>> 
>>>>>>> 
>>>>>>> 
>>>>>>> 
>>>>>>> Ming Guo wrote:
>>>>>>> 
>>>>>>>> Hi, Ed,
>>>>>>>> I just set the files, but the errors still there,
>>>>>>>> 
>>>>>>>> "
>>>>>>>> namelist read: variable not in namelist
>>>>>>>> apparent state: unit 11 named /tmp/tmp.FA6VrWo
>>>>>>>> last formate: list io
>>>>>>>> latey reading sequential formatted external IO
>>>>>>>> Abort (core dumped)
>>>>>>>> "
>>>>>>>> 
>>>>>>>> The attachments are my "EXF" files.
>>>>>>>> Can you help me to find out the problem?
>>>>>>>> By the way, is there any spectial format needed for the force file?
>>>>>>>> 
>>>>>>>> thanks,
>>>>>>>> Ming
>>>>>>>> 
>>>>>>>> 
>>>>>>>> 
>>>>>>> 
>>>>>>> _______________________________________________
>>>>>>> MITgcm-support mailing list
>>>>>>> MITgcm-support at mitgcm.org
>>>>>>> http://mitgcm.org/mailman/listinfo/mitgcm-support
>>>>>>> 
>>>>>> _______________________________________________
>>>>>> MITgcm-support mailing list
>>>>>> MITgcm-support at mitgcm.org
>>>>>> http://mitgcm.org/mailman/listinfo/mitgcm-support
>>>>> 
>>>>> 
>>>>> 
>>>>> 
>>>> _______________________________________________
>>>> MITgcm-support mailing list
>>>> MITgcm-support at mitgcm.org
>>>> http://mitgcm.org/mailman/listinfo/mitgcm-support
>>> 
>>> 
>>> 
>>> _______________________________________________
>>> MITgcm-support mailing list
>>> MITgcm-support at mitgcm.org
>>> http://mitgcm.org/mailman/listinfo/mitgcm-support
>>> 
>> _______________________________________________
>> MITgcm-support mailing list
>> MITgcm-support at mitgcm.org
>> http://mitgcm.org/mailman/listinfo/mitgcm-support
>
>
> _______________________________________________
> MITgcm-support mailing list
> MITgcm-support at mitgcm.org
> http://mitgcm.org/mailman/listinfo/mitgcm-support
>
-------------- next part --------------
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) //                      MITgcm UV
(PID.TID 0000.0001) //                      =========
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) // execution environment starting up...
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // MITgcmUV version:  checkpoint57p_post
(PID.TID 0000.0001) // Build user:        gming
(PID.TID 0000.0001) // Build host:        karluk.physics.mun.ca
(PID.TID 0000.0001) // Build date:        Thu Sep 15 11:48:29 NDT 2005
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Execution Environment parameter file "eedata"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># Example "eedata" file
(PID.TID 0000.0001) ># Lines beginning "#" are comments
(PID.TID 0000.0001) ># nTx - No. threads per process in X
(PID.TID 0000.0001) ># nTy - No. threads per process in Y
(PID.TID 0000.0001) > &EEPARMS
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) ># Note: Some systems use & as the
(PID.TID 0000.0001) ># namelist terminator. Other systems
(PID.TID 0000.0001) ># use a / character (as shown here).
(PID.TID 0000.0001) >
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Computational Grid Specification ( see files "SIZE.h" )
(PID.TID 0000.0001) //                                  ( and "eedata"       )
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001)      nPx =    1 ; /* No. processes in X */
(PID.TID 0000.0001)      nPy =    1 ; /* No. processes in Y */
(PID.TID 0000.0001)      nSx =    2 ; /* No. tiles in X per process */
(PID.TID 0000.0001)      nSy =    2 ; /* No. tiles in Y per process */
(PID.TID 0000.0001)      sNx =   30 ; /* Tile size in X */
(PID.TID 0000.0001)      sNy =   30 ; /* Tile size in Y */
(PID.TID 0000.0001)      OLx =    2 ; /* Tile overlap distance in X */
(PID.TID 0000.0001)      OLy =    2 ; /* Tile overlap distance in Y */
(PID.TID 0000.0001)      nTx =    1 ; /* No. threads in X per process */
(PID.TID 0000.0001)      nTy =    1 ; /* No. threads in Y per process */
(PID.TID 0000.0001)       Nr =    1 ; /* No. levels in the vertical   */
(PID.TID 0000.0001)       nX =   60 ; /* Total domain size in X ( = nPx*nSx*sNx ) */
(PID.TID 0000.0001)       nY =   60 ; /* Total domain size in Y ( = nPy*nSy*sNy ) */
(PID.TID 0000.0001)   nTiles =    4 ; /* Total no. tiles per process ( = nSx*nSy ) */
(PID.TID 0000.0001)   nProcs =    1 ; /* Total no. processes ( = nPx*nPy ) */
(PID.TID 0000.0001) nThreads =    1 ; /* Total no. threads per process ( = nTx*nTy ) */
(PID.TID 0000.0001) usingMPI =    F ; /* Flag used to control whether MPI is in use */
(PID.TID 0000.0001)                   /*  note: To execute a program with MPI calls */
(PID.TID 0000.0001)                   /*  it must be launched appropriately e.g     */
(PID.TID 0000.0001)                   /*  "mpirun -np 64 ......"                    */
(PID.TID 0000.0001) useCoupler=   F ; /* Flag used to control communications with */
(PID.TID 0000.0001)                   /*  other model components, through a coupler */
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) // Mapping of tiles to threads
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) // -o- Thread   1, tiles (   1:   2,   1:   2)
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) // Tile <-> Tile connectvity table
(PID.TID 0000.0001) // ======================================================
(PID.TID 0000.0001) // Tile number: 000001 (process no. = 000001)
(PID.TID 0000.0001) //        WEST: Tile = 000002, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000001
(PID.TID 0000.0001) //        EAST: Tile = 000002, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000001
(PID.TID 0000.0001) //       SOUTH: Tile = 000003, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000002
(PID.TID 0000.0001) //       NORTH: Tile = 000003, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000002
(PID.TID 0000.0001) // Tile number: 000002 (process no. = 000001)
(PID.TID 0000.0001) //        WEST: Tile = 000001, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000001
(PID.TID 0000.0001) //        EAST: Tile = 000001, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000001
(PID.TID 0000.0001) //       SOUTH: Tile = 000004, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000002
(PID.TID 0000.0001) //       NORTH: Tile = 000004, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000002
(PID.TID 0000.0001) // Tile number: 000003 (process no. = 000001)
(PID.TID 0000.0001) //        WEST: Tile = 000004, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000002
(PID.TID 0000.0001) //        EAST: Tile = 000004, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000002
(PID.TID 0000.0001) //       SOUTH: Tile = 000001, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000001
(PID.TID 0000.0001) //       NORTH: Tile = 000001, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000001
(PID.TID 0000.0001) // Tile number: 000004 (process no. = 000001)
(PID.TID 0000.0001) //        WEST: Tile = 000003, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000002
(PID.TID 0000.0001) //        EAST: Tile = 000003, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000001, bj = 000002
(PID.TID 0000.0001) //       SOUTH: Tile = 000002, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000001
(PID.TID 0000.0001) //       NORTH: Tile = 000002, Process = 000001, Comm = put
(PID.TID 0000.0001) //                bi = 000002, bj = 000001
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Model parameter file "data"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># Model parameters
(PID.TID 0000.0001) ># Continuous equation parameters
(PID.TID 0000.0001) > &PARM01
(PID.TID 0000.0001) > tRef=20.,
(PID.TID 0000.0001) > sRef=10.,
(PID.TID 0000.0001) > viscAz=1.E-2,
(PID.TID 0000.0001) > viscAh=4.E2,
(PID.TID 0000.0001) > diffKhT=4.E2,
(PID.TID 0000.0001) > diffKzT=1.E-2,
(PID.TID 0000.0001) > beta=1.E-11,
(PID.TID 0000.0001) > tAlpha=2.E-4,
(PID.TID 0000.0001) > sBeta =0.,
(PID.TID 0000.0001) > gravity=9.81,
(PID.TID 0000.0001) > gBaro=9.81,
(PID.TID 0000.0001) > rigidLid=.FALSE.,
(PID.TID 0000.0001) > implicitFreeSurface=.TRUE.,
(PID.TID 0000.0001) > eosType='LINEAR',
(PID.TID 0000.0001) > readBinaryPrec=64,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) ># Elliptic solver parameters
(PID.TID 0000.0001) > &PARM02
(PID.TID 0000.0001) > cg2dMaxIters=1000,
(PID.TID 0000.0001) > cg2dTargetResidual=1.E-7,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) ># Time stepping parameters
(PID.TID 0000.0001) > &PARM03
(PID.TID 0000.0001) > startTime=0,
(PID.TID 0000.0001) >#endTime=311040000,
(PID.TID 0000.0001) > endTime=36000.0,
(PID.TID 0000.0001) > deltaTmom=1200.0,
(PID.TID 0000.0001) > deltaTtracer=1200.0,
(PID.TID 0000.0001) > abEps=0.1,
(PID.TID 0000.0001) > pChkptFreq=0.0,
(PID.TID 0000.0001) > chkptFreq=0.0,
(PID.TID 0000.0001) > dumpFreq=3600.0,
(PID.TID 0000.0001) > monitorFreq=3600.,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) ># Gridding parameters
(PID.TID 0000.0001) > &PARM04
(PID.TID 0000.0001) > usingCartesianGrid=.TRUE.,
(PID.TID 0000.0001) > usingSphericalPolarGrid=.FALSE.,
(PID.TID 0000.0001) > delX=60*20E3,
(PID.TID 0000.0001) > delY=60*20E3,
(PID.TID 0000.0001) > delZ=5000.,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) > &PARM05
(PID.TID 0000.0001) > bathyFile='topog.box',
(PID.TID 0000.0001) > hydrogThetaFile=,
(PID.TID 0000.0001) > hydrogSaltFile=,
(PID.TID 0000.0001) > zonalWindFile=,
(PID.TID 0000.0001) > meridWindFile=,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) 
(PID.TID 0000.0001) S/R INI_PARMS ; starts to read PARM01
(PID.TID 0000.0001) S/R INI_PARMS ; read PARM01 : OK
(PID.TID 0000.0001) S/R INI_PARMS ; starts to read PARM02
(PID.TID 0000.0001) S/R INI_PARMS ; read PARM02 : OK
(PID.TID 0000.0001) S/R INI_PARMS ; starts to read PARM03
(PID.TID 0000.0001) S/R INI_PARMS ; read PARM03 : OK
(PID.TID 0000.0001) S/R INI_PARMS ; starts to read PARM04
(PID.TID 0000.0001) S/R INI_PARMS ; read PARM04 : OK
(PID.TID 0000.0001) S/R INI_PARMS ; starts to read PARM05
(PID.TID 0000.0001) S/R INI_PARMS ; read PARM05 : OK
(PID.TID 0000.0001)  PACKAGES_BOOT: opening data.pkg
(PID.TID 0000.0001)  OPEN_COPY_DATA_FILE: opening file data.pkg
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Parameter file "data.pkg"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># Packages
(PID.TID 0000.0001) > &PACKAGES
(PID.TID 0000.0001) > useMNC=.TRUE.,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) 
(PID.TID 0000.0001)  PACKAGES_BOOT: finished reading data.pkg
(PID.TID 0000.0001)  MNC_READPARMS: opening file 'data.mnc'
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Parameter file "data.mnc"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># Example "data.mnc" file
(PID.TID 0000.0001) ># Lines beginning "#" are comments
(PID.TID 0000.0001) > &MNC_01
(PID.TID 0000.0001) ># mnc_echo_gvtypes=.FALSE.,
(PID.TID 0000.0001) ># mnc_use_indir=.FALSE.,
(PID.TID 0000.0001) > mnc_use_outdir=.TRUE.,
(PID.TID 0000.0001) > mnc_use_name_ni0=.TRUE.,
(PID.TID 0000.0001) > mnc_outdir_str='mnc_test_',
(PID.TID 0000.0001) > mnc_outdir_date=.TRUE.,
(PID.TID 0000.0001) > monitor_mnc=.FALSE.,
(PID.TID 0000.0001) >#snapshot_mnc=.FALSE.,
(PID.TID 0000.0001) >#timeave_mnc=.FALSE.,
(PID.TID 0000.0001) >#pickup_write_mnc=.FALSE.,
(PID.TID 0000.0001) >#pickup_read_mnc=.FALSE.,
(PID.TID 0000.0001) > &
(PID.TID 0000.0001) ># Note: Some systems use & as the
(PID.TID 0000.0001) ># namelist terminator. Other systems
(PID.TID 0000.0001) ># use a / character (as shown here).
(PID.TID 0000.0001) 
(PID.TID 0000.0001)  MNC_READPARMS: finished reading data.mnc
(PID.TID 0000.0001) CAL_READPARMS: opening data.cal
(PID.TID 0000.0001)  OPEN_COPY_DATA_FILE: opening file data.cal
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Parameter file "data.cal"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) >#

(PID.TID 0000.0001) ># *******************

(PID.TID 0000.0001) ># Calendar Parameters

(PID.TID 0000.0001) ># *******************

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) > &CAL_NML

(PID.TID 0000.0001) > TheCalendar='gregorian',

(PID.TID 0000.0001) > startDate_1=20000726,

(PID.TID 0000.0001) ># startDate_1=19790101,

(PID.TID 0000.0001) > startDate_2=0000,

(PID.TID 0000.0001) > &END

(PID.TID 0000.0001) 
(PID.TID 0000.0001) CAL_READPARMS: finished reading data.cal
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Calendar configuration >>> START <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) Calendar version: 0.2.0
(PID.TID 0000.0001) 
(PID.TID 0000.0001) startTime =   /* Start time of the model integration [s] */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) endTime =   /* End time of the model integration [s] */
(PID.TID 0000.0001)                 3.600000000000000E+04
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) deltatclock =   /* Time interval for a model forward step [s] */
(PID.TID 0000.0001)                 1.200000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingGregorianCalendar =  /* Calendar Type: Gregorian Calendar */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingJulianCalendar =  /* Calendar Type: Julian Calendar */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingModelCalendar =  /* Calendar Type: Model Calendar */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingNoCalendar =  /* Calendar Type: No Calendar */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) modelstartdate (YYYYMMDD) =   /* Model start date YYYY-MM-DD  */
(PID.TID 0000.0001)                20000726
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) modelstartdate (HHMMSS) =   /* Model start date HH-MM-SS  */
(PID.TID 0000.0001)                       0
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) modelenddate (YYYYMMDD) =   /* Model end date YYYY-MM-DD  */
(PID.TID 0000.0001)                20000726
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) modelenddate (HHMMSS) =   /* Model end date HH-MM-SS  */
(PID.TID 0000.0001)                  100000
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) intyears =   /* Number of calendar years affected by the integration  */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) intmonths =   /* Number of calendar months affected by the integration  */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) intdays =   /* Number of calendar days affected by the integration  */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nIter0 =   /* Base timestep number  */
(PID.TID 0000.0001)                       0
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nEndIter =   /* Final timestep number  */
(PID.TID 0000.0001)                      30
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nTimeSteps =   /* Number of model timesteps  */
(PID.TID 0000.0001)                      30
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Calendar configuration  >>> END <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) EXF_READPARMS: opening data.exf
(PID.TID 0000.0001)  OPEN_COPY_DATA_FILE: opening file data.exf
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Parameter file "data.exf"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># $Header: /u/gcmpack/packages/realtime_forcing/data.exf,v 1.1 2000/05/08 14:58:27 eckert Exp $

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) ># *********************

(PID.TID 0000.0001) ># External Forcing Data

(PID.TID 0000.0001) ># *********************

(PID.TID 0000.0001) > &EXF_NML

(PID.TID 0000.0001) >

(PID.TID 0000.0001) ># 

(PID.TID 0000.0001) > ustressstartdate1=20000726,

(PID.TID 0000.0001) > ustressstartdate2=0000,

(PID.TID 0000.0001) > ustressperiod=3600.0,

(PID.TID 0000.0001) ># 

(PID.TID 0000.0001) > vstressstartdate1=20000726,

(PID.TID 0000.0001) > vstressstartdate2=0000,

(PID.TID 0000.0001) > vstressperiod=3600.0,

(PID.TID 0000.0001) ># 

(PID.TID 0000.0001) >

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) >

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) > ustressfile='ustress',

(PID.TID 0000.0001) > vstressfile='ustress',

(PID.TID 0000.0001) >

(PID.TID 0000.0001) ># 

(PID.TID 0000.0001) > 

(PID.TID 0000.0001) > exf_iprec=32,

(PID.TID 0000.0001) > exf_yftype='RL',

(PID.TID 0000.0001) > 

(PID.TID 0000.0001) > &

(PID.TID 0000.0001) 
(PID.TID 0000.0001) EXF_READPARMS: finished reading data.exf
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // External forcing configuration >>> START <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) External forcing version: 0.2.2
(PID.TID 0000.0001) Uses Calendar version:    0.2.0
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ALLOW_ATM_TEMP:                 NOT defined
(PID.TID 0000.0001) // ALLOW_ATM_WIND:                 NOT defined
(PID.TID 0000.0001) // ALLOW_DOWNWARD_RADIATION:       NOT defined
(PID.TID 0000.0001) // ALLOW_BULKFORMULAE:             NOT defined
(PID.TID 0000.0001) 
(PID.TID 0000.0001)    Zonal wind stress forcing starts at                   0.
(PID.TID 0000.0001)    Zonal wind stress forcing period is                3600.
(PID.TID 0000.0001)    Zonal wind stress forcing is read from file:
(PID.TID 0000.0001)    >>  ustress  <<
(PID.TID 0000.0001) 
(PID.TID 0000.0001)    Meridional wind stress forcing starts at              0.
(PID.TID 0000.0001)    Meridional wind stress forcing period is           3600.
(PID.TID 0000.0001)    Meridional wind stress forcing is read from file:
(PID.TID 0000.0001)    >>  ustress  <<
(PID.TID 0000.0001) 
(PID.TID 0000.0001)    Heat flux forcing starts at                          0.
(PID.TID 0000.0001)    Heat flux forcing period is                           0.
(PID.TID 0000.0001)    Heat flux forcing is read from file:
(PID.TID 0000.0001)    >>    <<
(PID.TID 0000.0001) 
(PID.TID 0000.0001)    Salt flux forcing starts at                           0.
(PID.TID 0000.0001)    Salt flux forcing period is                           0.
(PID.TID 0000.0001)    Salt flux forcing is read from file:
(PID.TID 0000.0001)    >>    <<
(PID.TID 0000.0001) // EXF_READ_EVAP:                  NOT defined
(PID.TID 0000.0001) // ALLOW_RUNOFF:                   NOT defined
(PID.TID 0000.0001) 
(PID.TID 0000.0001)    Atmospheric pressure forcing starts at                0.
(PID.TID 0000.0001)    Atmospheric pressure forcing period is                0.
(PID.TID 0000.0001)    Atmospheric pressureforcing is read from file:
(PID.TID 0000.0001)    >>    <<
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // External forcing configuration  >>> END <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) EXF_CLIM_READPARMS: opening data.exf_clim
(PID.TID 0000.0001)  OPEN_COPY_DATA_FILE: opening file data.exf_clim
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Parameter file "data.exf_clim"
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) ># $Header: /u/gcmpack/MITgcm/pkg/exf/data.exf_clim,v 1.2 2002/12/28 10:11:11 dimitri Exp $

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) ># *********************************

(PID.TID 0000.0001) ># External Forcing Climatology Data

(PID.TID 0000.0001) ># *********************************

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) > &EXF_CLIM_NML

(PID.TID 0000.0001) >#

(PID.TID 0000.0001) > &END

(PID.TID 0000.0001) 
(PID.TID 0000.0001) EXF_CLIM_READPARMS: finished reading data.exf_clim
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // External forcing climatology configuration >>> START <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) External forcing version: 0.2.2
(PID.TID 0000.0001) Uses Calendar version:    0.2.0
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ALLOW_CLIMTEMP_RELAXATION:      NOT defined
(PID.TID 0000.0001) // ALLOW_CLIMSALT_RELAXATION:      NOT defined
(PID.TID 0000.0001) // ALLOW_CLIMSST_RELAXATION:       NOT defined
(PID.TID 0000.0001) // ALLOW_CLIMSSS_RELAXATION:       NOT defined
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // External forcing climatology configuration  >>> END <<<
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) %MON XC_max                       =   1.1900000000000E+06
(PID.TID 0000.0001) %MON XC_min                       =   1.0000000000000E+04
(PID.TID 0000.0001) %MON XC_mean                      =   6.0000000000000E+05
(PID.TID 0000.0001) %MON XC_sd                        =   3.4636204564973E+05
(PID.TID 0000.0001) %MON XG_max                       =   1.1800000000000E+06
(PID.TID 0000.0001) %MON XG_min                       =   2.0000000000000E+04
(PID.TID 0000.0001) %MON XG_mean                      =   6.0000000000000E+05
(PID.TID 0000.0001) %MON XG_sd                        =   3.4058772731853E+05
(PID.TID 0000.0001) %MON DXC_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXC_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXC_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXC_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DXF_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXF_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXF_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXF_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DXG_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXG_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXG_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXG_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DXV_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXV_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXV_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DXV_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON YC_max                       =   1.1900000000000E+06
(PID.TID 0000.0001) %MON YC_min                       =   1.0000000000000E+04
(PID.TID 0000.0001) %MON YC_mean                      =   6.0000000000000E+05
(PID.TID 0000.0001) %MON YC_sd                        =   3.4636204564973E+05
(PID.TID 0000.0001) %MON YG_max                       =   1.1800000000000E+06
(PID.TID 0000.0001) %MON YG_min                       =   2.0000000000000E+04
(PID.TID 0000.0001) %MON YG_mean                      =   6.0000000000000E+05
(PID.TID 0000.0001) %MON YG_sd                        =   3.4058772731853E+05
(PID.TID 0000.0001) %MON DYC_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYC_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYC_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYC_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DYF_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYF_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYF_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYF_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DYG_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYG_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYG_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYG_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON DYU_max                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYU_min                      =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYU_mean                     =   2.0000000000000E+04
(PID.TID 0000.0001) %MON DYU_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON RA_max                       =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RA_min                       =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RA_mean                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RA_sd                        =   0.0000000000000E+00
(PID.TID 0000.0001) %MON RAW_max                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAW_min                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAW_mean                     =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAW_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON RAS_max                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAS_min                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAS_mean                     =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAS_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON RAZ_max                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAZ_min                      =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAZ_mean                     =   4.0000000000000E+08
(PID.TID 0000.0001) %MON RAZ_sd                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON AngleCS_max                  =   1.0000000000000E+00
(PID.TID 0000.0001) %MON AngleCS_min                  =   1.0000000000000E+00
(PID.TID 0000.0001) %MON AngleCS_mean                 =   1.0000000000000E+00
(PID.TID 0000.0001) %MON AngleCS_sd                   =   0.0000000000000E+00
(PID.TID 0000.0001) %MON AngleSN_max                  =   0.0000000000000E+00
(PID.TID 0000.0001) %MON AngleSN_min                  =   0.0000000000000E+00
(PID.TID 0000.0001) %MON AngleSN_mean                 =   0.0000000000000E+00
(PID.TID 0000.0001) %MON AngleSN_sd                   =   0.0000000000000E+00
(PID.TID 0000.0001)  MDSREADFIELD: opening global file: topog.box
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field Model R_low (ini_masks_etc) at iteration          1
(PID.TID 0000.0001) // CMIN =         -5.000000000000000E+03
(PID.TID 0000.0001) // CMAX =         -5.000000000000000E+03
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(  -1:  62:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  62:  -1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field Model Ro_surf (ini_masks_etc) at iteration          1
(PID.TID 0000.0001) // CMIN =          1.000000000000000E+32
(PID.TID 0000.0001) // CMAX =         -1.000000000000000E+32
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(  -1:  62:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  62:  -1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field hFacC at iteration          1
(PID.TID 0000.0001) // CMIN =          1.000000000000000E+00
(PID.TID 0000.0001) // CMAX =          1.000000000000000E+00
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(  -1:  62:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  62:  -1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field hFacW at iteration          1
(PID.TID 0000.0001) // CMIN =          1.000000000000000E+00
(PID.TID 0000.0001) // CMAX =          1.000000000000000E+00
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(  -1:  62:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  62:  -1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field hFacS at iteration          1
(PID.TID 0000.0001) // CMIN =          1.000000000000000E+00
(PID.TID 0000.0001) // CMAX =          1.000000000000000E+00
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(  -1:  62:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  62:  -1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // ===================================
(PID.TID 0000.0001) // GAD parameters :
(PID.TID 0000.0001) // ===================================
(PID.TID 0000.0001) tempAdvScheme =   /* Temp. Horiz.Advection scheme selector */
(PID.TID 0000.0001)                       2
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempVertAdvScheme =   /* Temp. Vert. Advection scheme selector */
(PID.TID 0000.0001)                       2
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempMultiDimAdvec =   /* use Muti-Dim Advec method for Temp */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempAdamsBashforth =   /* use Adams-Bashforth time-stepping for Temp */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltAdvScheme =   /* Salt. Horiz.advection scheme selector */
(PID.TID 0000.0001)                       2
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltVertAdvScheme =   /* Salt. Vert. Advection scheme selector */
(PID.TID 0000.0001)                       2
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltMultiDimAdvec =   /* use Muti-Dim Advec method for Salt */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltAdamsBashforth =   /* use Adams-Bashforth time-stepping for Salt */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) // ===================================
(PID.TID 0000.0001) %MON fCori_max                    =   1.1190000000000E-04
(PID.TID 0000.0001) %MON fCori_min                    =   1.0010000000000E-04
(PID.TID 0000.0001) %MON fCori_mean                   =   1.0600000000000E-04
(PID.TID 0000.0001) %MON fCori_sd                     =   3.4636204564973E-06
(PID.TID 0000.0001) %MON fCoriG_max                   =   1.1180000000000E-04
(PID.TID 0000.0001) %MON fCoriG_min                   =   1.0000000000000E-04
(PID.TID 0000.0001) %MON fCoriG_mean                  =   1.0590000000000E-04
(PID.TID 0000.0001) %MON fCoriG_sd                    =   3.4636204564973E-06
(PID.TID 0000.0001) %MON fCoriCos_max                 =   0.0000000000000E+00
(PID.TID 0000.0001) %MON fCoriCos_min                 =   0.0000000000000E+00
(PID.TID 0000.0001) %MON fCoriCos_mean                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON fCoriCos_sd                  =   0.0000000000000E+00
(PID.TID 0000.0001) INI_CG2D: CG2D normalisation factor =  2.0000000000000001E-04
(PID.TID 0000.0001) 
(PID.TID 0000.0001) CONFIG_CHECK: OK
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Model configuration
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) //
(PID.TID 0000.0001) // "Physical" paramters ( PARM01 in namelist )
(PID.TID 0000.0001) //
(PID.TID 0000.0001) buoyancyRelation = OCEANIC
(PID.TID 0000.0001) fluidIsAir  =  /* fluid major constituent is Air */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) fluidIsWater=  /* fuild major constituent is Water */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingPCoords =  /* use p (or p*) vertical coordinate */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingZCoords =  /* use z (or z*) vertical coordinate */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tRef =   /* Reference temperature profile ( oC or oK ) */
(PID.TID 0000.0001)                 2.000000000000000E+01       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) sRef =   /* Reference salinity profile ( ppt ) */
(PID.TID 0000.0001)                 1.000000000000000E+01       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscAh =   /* Lateral eddy viscosity ( m^2/s ) */
(PID.TID 0000.0001)                 4.000000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscAhMax =   /* Maximum lateral eddy viscosity ( m^2/s ) */
(PID.TID 0000.0001)                 1.000000000000000E+21
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscAhGrid =   /* Grid dependent lateral eddy viscosity ( non-dim. ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useFullLeith =   /* Use Full Form of Leith Viscosity on/off flag*/
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscC2leith = /* Leith harmonic viscosity factor (on grad(vort),non-dim.) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscC2leithD = /* Leith harmonic viscosity factor (on grad(div),non-dim.) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscC2smag =   /* Smagorinsky harmonic viscosity factor (non-dim.) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscA4 =   /* Lateral biharmonic viscosity ( m^4/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscA4Max =   /* Maximum biharmonic viscosity ( m^2/s ) */
(PID.TID 0000.0001)                 1.000000000000000E+21
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscA4Grid =   /* Grid dependent biharmonic viscosity ( non-dim. ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscC4leith = /* Leith biharm viscosity factor (on grad(vort), non-dim.) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscC4leithD = /* Leith biharm viscosity factor (on grad(div), non-dim.) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) no_slip_sides =  /* Viscous BCs: No-slip sides */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) viscAr =   /* Vertical eddy viscosity ( units of r^2/s ) */
(PID.TID 0000.0001)                 1.000000000000000E-02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) no_slip_bottom =  /* Viscous BCs: No-slip bottom */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKhT =   /* Laplacian diffusion of heat laterally ( m^2/s ) */
(PID.TID 0000.0001)                 4.000000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffK4T =   /* Bihaarmonic diffusion of heat laterally ( m^4/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKhS =   /* Laplacian diffusion of salt laterally ( m^2/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffK4S =   /* Bihaarmonic diffusion of salt laterally ( m^4/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrNrT = /* vertical profile of vertical diffusion of Temp ( m^2/s )*/
(PID.TID 0000.0001)                 1.000000000000000E-02       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrNrS = /* vertical profile of vertical diffusion of Salt ( m^2/s )*/
(PID.TID 0000.0001)                 0.000000000000000E+00       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrBL79surf =   /* Surface diffusion for Bryan and Lewis 1979 ( m^2/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrBL79deep =   /* Deep diffusion for Bryan and Lewis 1979 ( m^2/s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrBL79scl =   /* Depth scale for Bryan and Lewis 1979 ( m ) */
(PID.TID 0000.0001)                 2.000000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) diffKrBL79Ho =   /* Turning depth for Bryan and Lewis 1979 ( m ) */
(PID.TID 0000.0001)                -2.000000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)  Equation of State : eosType = LINEAR
(PID.TID 0000.0001) tAlpha =   /* Linear EOS thermal expansion coefficient ( 1/degree ) */
(PID.TID 0000.0001)                 2.000000000000000E-04
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) sBeta =   /* Linear EOS haline contraction coefficient ( 1/ppt ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rhonil =   /* Reference density ( kg/m^3 ) */
(PID.TID 0000.0001)                 9.998000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rhoConst =   /* Reference density ( kg/m^3 ) */
(PID.TID 0000.0001)                 9.998000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rhoConstFresh =   /* Reference density ( kg/m^3 ) */
(PID.TID 0000.0001)                 9.998000000000000E+02
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) gravity =   /* Gravitational acceleration ( m/s^2 ) */
(PID.TID 0000.0001)                 9.810000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) gBaro =   /* Barotropic gravity ( m/s^2 ) */
(PID.TID 0000.0001)                 9.810000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rotationPeriod =   /* Rotation Period ( s ) */
(PID.TID 0000.0001)                 8.640000000000000E+04
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) omega =   /* Angular velocity ( rad/s ) */
(PID.TID 0000.0001)                 7.272205216643040E-05
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) f0 =   /* Reference coriolis parameter ( 1/s ) */
(PID.TID 0000.0001)                 1.000000000000000E-04
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) beta =   /* Beta ( 1/(m.s) ) */
(PID.TID 0000.0001)                 9.999999999999999E-12
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) freeSurfFac =   /* Implicit free surface factor */
(PID.TID 0000.0001)                 1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) implicitFreeSurface =   /* Implicit free surface on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rigidLid =   /* Rigid lid on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) implicSurfPress =   /* Surface Pressure implicit factor (0-1)*/
(PID.TID 0000.0001)                 1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) implicDiv2Dflow =   /* Barot. Flow Div. implicit factor (0-1)*/
(PID.TID 0000.0001)                 1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) exactConserv =   /* Exact Volume Conservation on/off flag*/
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) uniformLin_PhiSurf =   /* use uniform Bo_surf on/off flag*/
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nonlinFreeSurf =   /* Non-linear Free Surf. options (-1,0,1,2,3)*/
(PID.TID 0000.0001)                       0
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)      -1,0= Off ; 1,2,3= On, 2=+rescale gU,gV, 3=+update cg2d solv.
(PID.TID 0000.0001) hFacInf =   /* lower threshold for hFac (nonlinFreeSurf only)*/
(PID.TID 0000.0001)                 2.000000000000000E-01
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) hFacSup =   /* upper threshold for hFac (nonlinFreeSurf only)*/
(PID.TID 0000.0001)                 2.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) select_rStar =   /* r* Coordinate options (not yet implemented)*/
(PID.TID 0000.0001)                       0
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useRealFreshWaterFlux =   /* Real Fresh Water Flux on/off flag*/
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) convertFW2Salt = /* convert F.W. Flux to Salt Flux (-1=use local S)(ppt)*/
(PID.TID 0000.0001)                 3.500000000000000E+01
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nonHydrostatic =  /* Non-Hydrostatic on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momStepping =  /* Momentum equation on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momAdvection =  /* Momentum advection on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momViscosity =  /* Momentum viscosity on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momImplVertAdv =/* Momentum implicit vert. advection on/off*/
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) implicitViscosity = /* Implicit viscosity on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useCoriolis =  /* Coriolis on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useCDscheme =  /* CD scheme on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useJamartWetPoints= /* Coriolis WetPoints method flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useJamartMomAdv= /* V.I. Non-linear terms Jamart flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) SadournyCoriolis= /* Sadourny Coriolis discr. flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) upwindVorticity= /* Upwind bias vorticity flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useAbsVorticity= /* Work with f+zeta in Coriolis */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) highOrderVorticity= /* High order interp. of vort. flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) upwindShear= /* Upwind vertical Shear advection flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momForcing =  /* Momentum forcing on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) momPressureForcing =  /* Momentum pressure term on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) staggerTimeStep =   /* Stagger time stepping on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) multiDimAdvection =   /* enable/disable Multi-Dim Advection */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) useMultiDimAdvec =   /* Multi-Dim Advection is/is-not used */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) implicitDiffusion =/* Implicit Diffusion on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempStepping =  /* Temperature equation on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempAdvection=  /* Temperature advection on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempImplVertAdv =/* Temp. implicit vert. advection on/off */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tempForcing  =  /* Temperature forcing on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltStepping =  /* Salinity equation on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltAdvection=  /* Salinity advection on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltImplVertAdv =/* Sali. implicit vert. advection on/off */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) saltForcing  =  /* Salinity forcing on/off flag */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)  debugMode  =  /* Debug Mode on/off flag */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)    debLevA  =  /* 1rst level of debugging */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)    debLevB  =  /* 2nd  level of debugging */
(PID.TID 0000.0001)                       2
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001)  debugLevel =  /* select debugging level */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) //
(PID.TID 0000.0001) // Elliptic solver(s) paramters ( PARM02 in namelist )
(PID.TID 0000.0001) //
(PID.TID 0000.0001) cg2dMaxIters =   /* Upper limit on 2d con. grad iterations  */
(PID.TID 0000.0001)                    1000
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) cg2dChkResFreq =   /* 2d con. grad convergence test frequency */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) cg2dTargetResidual =   /* 2d con. grad target residual  */
(PID.TID 0000.0001)                 1.000000000000000E-07
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) cg2dTargetResWunit =   /* CG2d target residual [W units] */
(PID.TID 0000.0001)                -1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) cg2dPreCondFreq =   /* Freq. for updating cg2d preconditioner */
(PID.TID 0000.0001)                       1
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) //
(PID.TID 0000.0001) // Time stepping paramters ( PARM03 in namelist )
(PID.TID 0000.0001) //
(PID.TID 0000.0001) nIter0 =   /* Run starting timestep number  */
(PID.TID 0000.0001)                       0
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) nTimeSteps =   /* Number of timesteps */
(PID.TID 0000.0001)                      30
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) deltatTmom =   /* Momentum equation timestep ( s ) */
(PID.TID 0000.0001)                 1.200000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) deltaTfreesurf =   /* FreeSurface equation timestep ( s ) */
(PID.TID 0000.0001)                 1.200000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dTtracerLev =   /* Tracer equation timestep ( s ) */
(PID.TID 0000.0001)                 1.200000000000000E+03       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) deltatTClock  =   /* Model clock timestep ( s ) */
(PID.TID 0000.0001)                 1.200000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) cAdjFreq =   /* Convective adjustment interval ( s ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) forcing_In_AB =   /* put T,S Forcing in Adams-Bash. stepping */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) abEps =   /* Adams-Bashforth-2 stabilizing weight */
(PID.TID 0000.0001)                 1.000000000000000E-01
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) baseTime =   /* Model base time ( s ). */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) startTime =   /* Run start time ( s ). */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) endTime =   /* Integration ending time ( s ). */
(PID.TID 0000.0001)                 3.600000000000000E+04
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pChkPtFreq =   /* Permanent restart/checkpoint file interval ( s ). */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) chkPtFreq =   /* Rolling restart/checkpoint file interval ( s ). */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pickup_write_mdsio =   /* Model IO flag. */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pickup_read_mdsio =   /* Model IO flag. */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pickup_write_mnc =   /* Model IO flag. */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pickup_read_mnc =   /* Model IO flag. */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) pickup_write_immed =   /* Model IO flag. */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dumpFreq =   /* Model state write out interval ( s ). */
(PID.TID 0000.0001)                 3.600000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) snapshot_mdsio =   /* Model IO flag. */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) snapshot_mnc =   /* Model IO flag. */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) monitorFreq =   /* Monitor output interval ( s ). */
(PID.TID 0000.0001)                 3.600000000000000E+03
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) monitor_stdio =   /* Model IO flag. */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) monitor_mnc =   /* Model IO flag. */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) externForcingPeriod =   /* forcing period (s) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) externForcingCycle =   /* period of the cyle (s). */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tauThetaClimRelax =   /* relaxation time scale (s) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) tauSaltClimRelax =   /* relaxation time scale (s) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) latBandClimRelax =   /* max. Lat. where relaxation */
(PID.TID 0000.0001)                 3.600000000000000E+06
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) //
(PID.TID 0000.0001) // Gridding paramters ( PARM04 in namelist )
(PID.TID 0000.0001) //
(PID.TID 0000.0001) usingCartesianGrid =   /* Cartesian coordinates flag ( True / False ) */
(PID.TID 0000.0001)                   T
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingSphericalPolarGrid =   /* Spherical coordinates flag ( True / False ) */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) usingCylindricalGrid =   /* Spherical coordinates flag ( True / False ) */
(PID.TID 0000.0001)                   F
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) Ro_SeaLevel =   /* r(1) ( units of r ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rkSign =   /* index orientation relative to vertical coordinate */
(PID.TID 0000.0001)                -1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) horiVertRatio =   /* Ratio on units : Horiz - Vertical */
(PID.TID 0000.0001)                 1.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) drC =   /* C spacing ( units of r ) */
(PID.TID 0000.0001)                 2.500000000000000E+03       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) drF =   /* W spacing ( units of r ) */
(PID.TID 0000.0001)                 5.000000000000000E+03       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) delX =   /* U spacing ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) delY =   /* V spacing ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) phiMin =    /* South edge (ignored - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) thetaMin =    /* West edge ( ignored - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)                 0.000000000000000E+00
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rSphere =    /* Radius ( ignored - cartesian, m - spherical ) */
(PID.TID 0000.0001)                 6.370000000000000E+06
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) xcoord =   /* P-point X coord ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)                 1.000000000000000E+04,      /* I =  1 */
(PID.TID 0000.0001)                 3.000000000000000E+04,      /* I =  2 */
(PID.TID 0000.0001)                 5.000000000000000E+04,      /* I =  3 */
(PID.TID 0000.0001)                 7.000000000000000E+04,      /* I =  4 */
(PID.TID 0000.0001)                 9.000000000000000E+04,      /* I =  5 */
(PID.TID 0000.0001)                 1.100000000000000E+05,      /* I =  6 */
(PID.TID 0000.0001)                 1.300000000000000E+05,      /* I =  7 */
(PID.TID 0000.0001)                 1.500000000000000E+05,      /* I =  8 */
(PID.TID 0000.0001)                 1.700000000000000E+05,      /* I =  9 */
(PID.TID 0000.0001)                 1.900000000000000E+05,      /* I = 10 */
(PID.TID 0000.0001)                 2.100000000000000E+05,      /* I = 11 */
(PID.TID 0000.0001)                 2.300000000000000E+05,      /* I = 12 */
(PID.TID 0000.0001)                 2.500000000000000E+05,      /* I = 13 */
(PID.TID 0000.0001)                 2.700000000000000E+05,      /* I = 14 */
(PID.TID 0000.0001)                 2.900000000000000E+05,      /* I = 15 */
(PID.TID 0000.0001)                 3.100000000000000E+05,      /* I = 16 */
(PID.TID 0000.0001)                 3.300000000000000E+05,      /* I = 17 */
(PID.TID 0000.0001)                 3.500000000000000E+05,      /* I = 18 */
(PID.TID 0000.0001)                 3.700000000000000E+05,      /* I = 19 */
(PID.TID 0000.0001)                 3.900000000000000E+05,      /* I = 20 */
(PID.TID 0000.0001)                 4.100000000000000E+05,      /* I = 21 */
(PID.TID 0000.0001)                 4.300000000000000E+05,      /* I = 22 */
(PID.TID 0000.0001)                 4.500000000000000E+05,      /* I = 23 */
(PID.TID 0000.0001)                 4.700000000000000E+05,      /* I = 24 */
(PID.TID 0000.0001)                 4.900000000000000E+05,      /* I = 25 */
(PID.TID 0000.0001)                 5.100000000000000E+05,      /* I = 26 */
(PID.TID 0000.0001)                 5.300000000000000E+05,      /* I = 27 */
(PID.TID 0000.0001)                 5.500000000000000E+05,      /* I = 28 */
(PID.TID 0000.0001)                 5.700000000000000E+05,      /* I = 29 */
(PID.TID 0000.0001)                 5.900000000000000E+05,      /* I = 30 */
(PID.TID 0000.0001)                 6.100000000000000E+05,      /* I = 31 */
(PID.TID 0000.0001)                 6.300000000000000E+05,      /* I = 32 */
(PID.TID 0000.0001)                 6.500000000000000E+05,      /* I = 33 */
(PID.TID 0000.0001)                 6.700000000000000E+05,      /* I = 34 */
(PID.TID 0000.0001)                 6.900000000000000E+05,      /* I = 35 */
(PID.TID 0000.0001)                 7.100000000000000E+05,      /* I = 36 */
(PID.TID 0000.0001)                 7.300000000000000E+05,      /* I = 37 */
(PID.TID 0000.0001)                 7.500000000000000E+05,      /* I = 38 */
(PID.TID 0000.0001)                 7.700000000000000E+05,      /* I = 39 */
(PID.TID 0000.0001)                 7.900000000000000E+05,      /* I = 40 */
(PID.TID 0000.0001)                 8.100000000000000E+05,      /* I = 41 */
(PID.TID 0000.0001)                 8.300000000000000E+05,      /* I = 42 */
(PID.TID 0000.0001)                 8.500000000000000E+05,      /* I = 43 */
(PID.TID 0000.0001)                 8.700000000000000E+05,      /* I = 44 */
(PID.TID 0000.0001)                 8.900000000000000E+05,      /* I = 45 */
(PID.TID 0000.0001)                 9.100000000000000E+05,      /* I = 46 */
(PID.TID 0000.0001)                 9.300000000000000E+05,      /* I = 47 */
(PID.TID 0000.0001)                 9.500000000000000E+05,      /* I = 48 */
(PID.TID 0000.0001)                 9.700000000000000E+05,      /* I = 49 */
(PID.TID 0000.0001)                 9.900000000000000E+05,      /* I = 50 */
(PID.TID 0000.0001)                 1.010000000000000E+06,      /* I = 51 */
(PID.TID 0000.0001)                 1.030000000000000E+06,      /* I = 52 */
(PID.TID 0000.0001)                 1.050000000000000E+06,      /* I = 53 */
(PID.TID 0000.0001)                 1.070000000000000E+06,      /* I = 54 */
(PID.TID 0000.0001)                 1.090000000000000E+06,      /* I = 55 */
(PID.TID 0000.0001)                 1.110000000000000E+06,      /* I = 56 */
(PID.TID 0000.0001)                 1.130000000000000E+06,      /* I = 57 */
(PID.TID 0000.0001)                 1.150000000000000E+06,      /* I = 58 */
(PID.TID 0000.0001)                 1.170000000000000E+06,      /* I = 59 */
(PID.TID 0000.0001)                 1.190000000000000E+06       /* I = 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) ycoord =   /* P-point Y coord ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)                 1.000000000000000E+04,      /* J =  1 */
(PID.TID 0000.0001)                 3.000000000000000E+04,      /* J =  2 */
(PID.TID 0000.0001)                 5.000000000000000E+04,      /* J =  3 */
(PID.TID 0000.0001)                 7.000000000000000E+04,      /* J =  4 */
(PID.TID 0000.0001)                 9.000000000000000E+04,      /* J =  5 */
(PID.TID 0000.0001)                 1.100000000000000E+05,      /* J =  6 */
(PID.TID 0000.0001)                 1.300000000000000E+05,      /* J =  7 */
(PID.TID 0000.0001)                 1.500000000000000E+05,      /* J =  8 */
(PID.TID 0000.0001)                 1.700000000000000E+05,      /* J =  9 */
(PID.TID 0000.0001)                 1.900000000000000E+05,      /* J = 10 */
(PID.TID 0000.0001)                 2.100000000000000E+05,      /* J = 11 */
(PID.TID 0000.0001)                 2.300000000000000E+05,      /* J = 12 */
(PID.TID 0000.0001)                 2.500000000000000E+05,      /* J = 13 */
(PID.TID 0000.0001)                 2.700000000000000E+05,      /* J = 14 */
(PID.TID 0000.0001)                 2.900000000000000E+05,      /* J = 15 */
(PID.TID 0000.0001)                 3.100000000000000E+05,      /* J = 16 */
(PID.TID 0000.0001)                 3.300000000000000E+05,      /* J = 17 */
(PID.TID 0000.0001)                 3.500000000000000E+05,      /* J = 18 */
(PID.TID 0000.0001)                 3.700000000000000E+05,      /* J = 19 */
(PID.TID 0000.0001)                 3.900000000000000E+05,      /* J = 20 */
(PID.TID 0000.0001)                 4.100000000000000E+05,      /* J = 21 */
(PID.TID 0000.0001)                 4.300000000000000E+05,      /* J = 22 */
(PID.TID 0000.0001)                 4.500000000000000E+05,      /* J = 23 */
(PID.TID 0000.0001)                 4.700000000000000E+05,      /* J = 24 */
(PID.TID 0000.0001)                 4.900000000000000E+05,      /* J = 25 */
(PID.TID 0000.0001)                 5.100000000000000E+05,      /* J = 26 */
(PID.TID 0000.0001)                 5.300000000000000E+05,      /* J = 27 */
(PID.TID 0000.0001)                 5.500000000000000E+05,      /* J = 28 */
(PID.TID 0000.0001)                 5.700000000000000E+05,      /* J = 29 */
(PID.TID 0000.0001)                 5.900000000000000E+05,      /* J = 30 */
(PID.TID 0000.0001)                 6.100000000000000E+05,      /* J = 31 */
(PID.TID 0000.0001)                 6.300000000000000E+05,      /* J = 32 */
(PID.TID 0000.0001)                 6.500000000000000E+05,      /* J = 33 */
(PID.TID 0000.0001)                 6.700000000000000E+05,      /* J = 34 */
(PID.TID 0000.0001)                 6.900000000000000E+05,      /* J = 35 */
(PID.TID 0000.0001)                 7.100000000000000E+05,      /* J = 36 */
(PID.TID 0000.0001)                 7.300000000000000E+05,      /* J = 37 */
(PID.TID 0000.0001)                 7.500000000000000E+05,      /* J = 38 */
(PID.TID 0000.0001)                 7.700000000000000E+05,      /* J = 39 */
(PID.TID 0000.0001)                 7.900000000000000E+05,      /* J = 40 */
(PID.TID 0000.0001)                 8.100000000000000E+05,      /* J = 41 */
(PID.TID 0000.0001)                 8.300000000000000E+05,      /* J = 42 */
(PID.TID 0000.0001)                 8.500000000000000E+05,      /* J = 43 */
(PID.TID 0000.0001)                 8.700000000000000E+05,      /* J = 44 */
(PID.TID 0000.0001)                 8.900000000000000E+05,      /* J = 45 */
(PID.TID 0000.0001)                 9.100000000000000E+05,      /* J = 46 */
(PID.TID 0000.0001)                 9.300000000000000E+05,      /* J = 47 */
(PID.TID 0000.0001)                 9.500000000000000E+05,      /* J = 48 */
(PID.TID 0000.0001)                 9.700000000000000E+05,      /* J = 49 */
(PID.TID 0000.0001)                 9.900000000000000E+05,      /* J = 50 */
(PID.TID 0000.0001)                 1.010000000000000E+06,      /* J = 51 */
(PID.TID 0000.0001)                 1.030000000000000E+06,      /* J = 52 */
(PID.TID 0000.0001)                 1.050000000000000E+06,      /* J = 53 */
(PID.TID 0000.0001)                 1.070000000000000E+06,      /* J = 54 */
(PID.TID 0000.0001)                 1.090000000000000E+06,      /* J = 55 */
(PID.TID 0000.0001)                 1.110000000000000E+06,      /* J = 56 */
(PID.TID 0000.0001)                 1.130000000000000E+06,      /* J = 57 */
(PID.TID 0000.0001)                 1.150000000000000E+06,      /* J = 58 */
(PID.TID 0000.0001)                 1.170000000000000E+06,      /* J = 59 */
(PID.TID 0000.0001)                 1.190000000000000E+06       /* J = 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rcoord =   /* P-point R coordinate (  units of r ) */
(PID.TID 0000.0001)                -2.500000000000000E+03       /* K =  1 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rF =   /* W-Interf. R coordinate (  units of r ) */
(PID.TID 0000.0001)                 0.000000000000000E+00,      /* K =  1 */
(PID.TID 0000.0001)                -5.000000000000000E+03       /* K =  2 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxF =  /* dxF(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxF =  /* dxF(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyF =  /* dyF(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyF =  /* dyF(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxG =  /* dxG(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxG =  /* dxG(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyG =  /* dyG(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyG =  /* dyG(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxC =  /* dxC(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxC =  /* dxC(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyC =  /* dyC(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyC =  /* dyC(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxV =  /* dxV(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dxV =  /* dxV(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyU =  /* dyU(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) dyU =  /* dyU(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  2.000000000000000E+04              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rA =  /* rA(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rA =  /* rA(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rAw =  /* rAw(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rAw =  /* rAw(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rAs =  /* rAs(:,1,:,1) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* I =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) rAs =  /* rAs(1,:,1,:) ( m - cartesian, degrees - spherical ) */
(PID.TID 0000.0001)    60 @  4.000000000000000E+08              /* J =  1: 60 */
(PID.TID 0000.0001)     ;
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field Initial Temperature at iteration          1
(PID.TID 0000.0001) // CMIN =          2.000000000000000E+01
(PID.TID 0000.0001) // CMAX =          2.000000000000000E+01
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(   1:  60:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  60:   1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Field Initial Salinity at iteration          1
(PID.TID 0000.0001) // CMIN =          1.000000000000000E+01
(PID.TID 0000.0001) // CMAX =          1.000000000000000E+01
(PID.TID 0000.0001) // CINT =          0.000000000000000E+00
(PID.TID 0000.0001) // SYMBOLS (CMIN->CMAX): -abcdefghijklmnopqrstuvwxyz+
(PID.TID 0000.0001) //                  0.0: .
(PID.TID 0000.0001) // RANGE I (Lo:Hi:Step):(   1:  60:   1)
(PID.TID 0000.0001) // RANGE J (Lo:Hi:Step):(  60:   1:  -1)
(PID.TID 0000.0001) // RANGE K (Lo:Hi:Step):(   1:   1:   1)
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // END OF FIELD                                          =
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) Start initial hydrostatic pressure computation
(PID.TID 0000.0001) Pressure is predetermined for buoyancyRelation OCEANIC
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Model current state
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) 
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // Begin MONITOR dynamic field statistics
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) %MON time_tsnumber                =                     0
(PID.TID 0000.0001) %MON time_secondsf                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_ustress_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_ustress_min              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_ustress_mean             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_ustress_sd               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_ustress_del2             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_vstress_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_vstress_min              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_vstress_mean             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_vstress_sd               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_vstress_del2             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_hflux_max                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_hflux_min                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_hflux_mean               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_hflux_sd                 =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_hflux_del2               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_sflux_max                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_sflux_min                =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_sflux_mean               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_sflux_sd                 =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_sflux_del2               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_apressure_max            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_apressure_min            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_apressure_mean           =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_apressure_sd             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON exf_apressure_del2           =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_eta_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_eta_min              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_eta_mean             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_eta_sd               =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_eta_del2             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_uvel_max             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_uvel_min             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_uvel_mean            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_uvel_sd              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_uvel_del2            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_vvel_max             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_vvel_min             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_vvel_mean            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_vvel_sd              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_vvel_del2            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_wvel_max             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_wvel_min             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_wvel_mean            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_wvel_sd              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_wvel_del2            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_theta_max            =   2.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_theta_min            =   2.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_theta_mean           =   2.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_theta_sd             =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_theta_del2           =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_salt_max             =   1.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_salt_min             =   1.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_salt_mean            =   1.0000000000000E+01
(PID.TID 0000.0001) %MON dynstat_salt_sd              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON dynstat_salt_del2            =   0.0000000000000E+00
(PID.TID 0000.0001) %MON advcfl_uvel_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON advcfl_vvel_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON advcfl_wvel_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON advcfl_W_hf_max              =   0.0000000000000E+00
(PID.TID 0000.0001) %MON pe_b_mean                    =   0.0000000000000E+00
(PID.TID 0000.0001) %MON ke_max                       =   0.0000000000000E+00
(PID.TID 0000.0001) %MON ke_mean                      =   0.0000000000000E+00
(PID.TID 0000.0001) %MON ke_vol                       =   6.9620000000000E+15
(PID.TID 0000.0001) %MON vort_r_min                   =   0.0000000000000E+00
(PID.TID 0000.0001) %MON vort_r_max                   =   0.0000000000000E+00
(PID.TID 0000.0001) %MON vort_a_mean                  =   1.0590000000000E-04
(PID.TID 0000.0001) %MON vort_a_sd                    =   3.4599552486417E-06
(PID.TID 0000.0001) %MON vort_p_mean                  =   1.1128474576271E-04
(PID.TID 0000.0001) %MON vort_p_sd                    =   4.1218906364489E-05
(PID.TID 0000.0001) %MON surfExpan_theta_mean         =   0.0000000000000E+00
(PID.TID 0000.0001) %MON surfExpan_salt_mean          =   0.0000000000000E+00
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001) // End MONITOR dynamic field statistics
(PID.TID 0000.0001) // =======================================================
(PID.TID 0000.0001)  MDSREADFIELD: opening global file: ustress
(PID.TID 0000.0001)  MDSREADFIELD: opening global file: ustress
(PID.TID 0000.0001)  MDSREADFIELD: opening global file: ustress
(PID.TID 0000.0001)  MDSREADFIELD: opening global file: ustress
EXF WARNING: ustress out of range for i,j,it=       2      7      0   0.148105866606822E+39
EXF WARNING: vstress out of range for i,j,it=       2      7      0   0.148105866606822E+39
EXF WARNING: If you think these values are OK 
EXF WARNING: then set useExfCheckRange=.FALSE.
-------------- next part --------------
A non-text attachment was scrubbed...
Name: ustress
Type: application/octet-stream
Size: 345600 bytes
Desc: 
URL: <http://mitgcm.org/pipermail/mitgcm-support/attachments/20050915/2231e23e/attachment.obj>
-------------- next part --------------
ieee='b';

accuracy='real*8';



nx=60;

ny=60;



% Wind-stress 

%i:  time step

%swindst:  stress vector

for i=1:12

taux((i-1)*60+1:i*60,:)=ones(nx,ny)*swindst(i,1);

tauy((i-1)*60+1:i*60,:)=ones(nx,ny)*swindst(i,2);

end



fid=fopen('ustress1','w',ieee); fwrite(fid,taux',accuracy); fclose(fid);

fid=fopen('vstress1','w',ieee); fwrite(fid,tauy',accuracy); fclose(fid);









More information about the MITgcm-support mailing list